Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Applications of Plain and Non-Metal Doped, Biomass-Derived Carbon Quantum Dots: A Short Review
Corresponding Author(s) : R. Krishnaveni
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Carbon dots (CDs) are very small particles have acquired research interest in the last few years, due to their unique characteristics like low-cost synthetic protocols, fast and flexible modification procedures and low toxicity. These CDs exhibit excellent physical and chemical properties like high crystallization, superconductivity, electronic conductivity, etc. and hence they establish themselves as massive entrants in emerging fields of applications like chemical sensors, nanomedicines and electrocatalytic reactions. Functional nanosensors with luminescent properties are in high demand in bioanalysis and doped carbon dots play a great role in this feature. The elements viz. B, C, N, P and S doped carbon dots are used in the detection of metal ions in biological samples, bioimaging and DNA studies. This critical review examines the environmentally friendly techniques of synthesizing doped/undoped carbon quantum dots from biomasses, with an emphasis on their electrochemical and luminescent applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.J. Singh, T. Ahmed, P. Gautam, A.S. Sadhu, D.-H. Lien, S.-C. Chen, Y.-L. Chueh and H.-C. Kuo, Nanomaterials, 11, 1549 (2021); https://doi.org/10.3390/nano11061549
- J.H. Shen, Y.H. Zhu, C. Chen, X.L. Yang and C.Z. Li, Chem. Commun., 47, 2580 (2011); https://doi.org/10.1039/C0CC04812G
- J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu and K.P. Loh, Nat. Nanotechnol., 6, 247 (2011); https://doi.org/10.1038/nnano.2011.30
- R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll and Q. Li, Angew. Chem. Int. Ed., 48, 4598 (2009); https://doi.org/10.1002/anie.200900652
- H. Ming, Z. Ma, Y. Liu, K.M. Pan, H. Yu, F. Wang and Z.H. Kang, Dalton Trans., 41, 9526 (2012); https://doi.org/10.1039/c2dt30985h
- M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos and N. Hildebrandt, Sensor Actust. Biol. Chem., 244, 425 (2017); https://doi.org/10.1016/j.snb.2017.01.003
- X.Y. Xu, R. Ray, Y. Gu, L. Ploehn, L. Gearheart, K. Raker and W.A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004); https://doi.org/10.1021/ja040082h
- Y.Q. Zhang, D.K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.L. Hong, Q.X. Yan, K. Yu and S.M. Huang, J. Mater. Chem., 22, 16714 (2012); https://doi.org/10.1039/c2jm32973e
- L. Zheng, Y. Chi, Y. Dong, J. Lin and B. Wang, J. Am. Chem. Soc., 131, 4564 (2009); https://doi.org/10.1021/ja809073f
- Z. Ma, H. Ming, H. Huang, Y. Liu and Z.H. Kang, New J. Chem., 36, 861 (2012); https://doi.org/10.1039/c2nj20942j
- S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi and X. Sun, Adv. Mater., 24, 2037 (2012); https://doi.org/10.1002/adma.201200164
- F. Wang, Z. Xie, H. Zhang, C.Y. Liu and Y.G. Zhang, Adv. Funct. Mater., 21, 1027 (2011); https://doi.org/10.1002/adfm.201002279
- J. Chen, X. Wang, Y. Huang, S. Lv, X. Cao, J. Yun and D. Cao, Eng. Sci., 5, 30 (2019); https://doi.org/10.30919/es8d666
- J. Di, J. Xia, X. Chen, M. Ji, S. Yin, Q. Zhang and H. Li, Carbon, 114, 601 (2017); https://doi.org/10.1016/j.carbon.2016.12.030
- T. Liu, J.X. Dong, S.G. Liu, N. Li, S.M. Lin, Y.Z. Fan, J.L. Lei, H.Q. Luo and N.B. Li, J. Hazard. Mater., 322, 430 (2017); https://doi.org/10.1016/j.jhazmat.2016.10.034
- R. Zhang and W. Chen, Biosens. Bioelectron., 55, 83 (2014); https://doi.org/10.1016/j.bios.2013.11.074
- D. Pooja, S. Saini, A. Thakur, B. Kumar, S. Tyagi and M.K. Nayak, J. Hazard. Mater., 328, 117 (2017); https://doi.org/10.1016/j.jhazmat.2017.01.015
- H.-W. Chu, B. Unnikrishnan, A. Anand, Y.-W. Lin and C.-C. Huang, J. Food Drug Anal., 28, 539 (2020); https://doi.org/10.38212/2224-6614.1269
- M. Lin, H.Y. Zou, T. Yang, Z.X. Liu, H. Liu and C.Z. Huang, Nanoscale, 8, 2999 (2016); https://doi.org/10.1039/C5NR08177G
- B.-C. Yin, B.-C. Ye, H. Wang, Z. Zhu and W. Tan, Chem. Commun., 48, 1248 (2012); https://doi.org/10.1039/C1CC15639J
- H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen and X. Chen, Anal. Chem., 86, 9846 (2014); https://doi.org/10.1021/ac502446m
- C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang and H. Feng, J. Mater. Chem. B Mater. Biol. Med., 5, 1971 (2017); https://doi.org/10.1039/C6TB03361J
- P. Yuan and D.R. Walt, Anal. Chem., 59, 2391 (1987); https://doi.org/10.1021/ac00146a015
- S. Chen, Y.L. Yu and J.H. Wang, Anal. Chim. Acta, 999, 13 (2018); https://doi.org/10.1016/j.aca.2017.10.026
- Q. Zhang, C. Zhang, Z. Li, J. Ge, C. Li, C. Dong and S. Shuang, RSC Adv., 5, 95054 (2015); https://doi.org/10.1039/C5RA18176C
- C. Jiang, H. Wu, X. Song, X. Ma, J. Wang and M. Tan, Talanta, 127, 68 (2014); https://doi.org/10.1016/j.talanta.2014.01.046
- V. Sharma, P. Tiwari and S.M. Mobin, J. Mater. Chem. B Mater. Biol. Med., 5, 8904 (2017); https://doi.org/10.1039/C7TB02484C
- X. Zhang, M. Jiang, N. Niu, Z. Chen, S. Li, S. Liu and J. Li, ChemSusChem, 11, 11 (2018); https://doi.org/10.1002/cssc.201701847
- J. Zhang, H. Wang, Y. Xiao, J. Tang, C. Liang, F. Li, H. Dong and W. Xu, Nanoscale Res. Lett., 12, 611 (2017); https://doi.org/10.1186/s11671-017-2369-1
- Y. Zhou, Y. Liu, Y. Li, Z. He, Q. Xu, Y. Chen, J. Street, H. Guo and M. Nelles, RSC Adv., 8, 23657 (2018); https://doi.org/10.1039/C8RA03272F
- L. Ding, X. Wang, J. Li, J. Huang and Z. Li, J. Technol. Mater. Sci. Ed., 33, 1546 (2018).
- Y. Guo, L. Zhang, F. Cao and Y. Leng, Sci. Rep., 6, 35795 (2016); https://doi.org/10.1038/srep35795
- C. Kang, Y. Huang, H. Yang, X.F. Yan and Z.P. Chen, Nanomaterials, 10, 2316 (2020); https://doi.org/10.3390/nano10112316
- V. Manikandan and N.Y. Lee, Environ. Res., 212, 113283 (2022); https://doi.org/10.1016/j.envres.2022.113283
- L. Wang and H.S. Zhou, Anal. Chem., 86, 8902 (2014); https://doi.org/10.1021/ac502646x
- L. Cui, X. Ren, M. Sun, H. Liu and L. Xia, Nanomaterials, 11, 3419 (2021); https://doi.org/10.3390/nano11123419
- H. Lu, C. Li, H. Wang, X. Wang and S. Xu, ACS Omega, 4, 21500 (2019); https://doi.org/10.1021/acsomega.9b03198
- C.L. Li, C.M. Ou, C.C. Huang, W.C. Wu, Y.P. Chen, T.E. Lin, L.C. Ho, C.W. Wang, C.C. Shih, H.C. Zhou, Y.C. Lee, W.F. Tzeng, T.J. Chiou, S.T. Chu, J. Cang and H.T. Chang, J. Mater. Chem. B, 2, 4564 (2014); https://doi.org/10.1039/c4tb00216d
- N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen and J. Wang, Biosens. Bioelectron., 85, 68 (2014); https://doi.org/10.1016/j.bios.2016.04.089
- G. Oza, K. Oza, S. Pandey, S. Shinde, A. Mewada, M. Thakur, M. Sharon and M. Sharon, Fluorescence, 25, 9 (2015); https://doi.org/10.1007/s10895-014-1477-x
- J. Zhang, Y. Yuan, G. Liang and S. H. Yu, Adv. Sci., 2, 1500002 (2015); https://doi.org/10.1002/advs.201500002
- B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang and S. Yao, Analyst, 138, 6551 (2013); https://doi.org/10.1039/C3AN01003A
- W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu and B. Yang, Energy Environ. Materials, 2, 172 (2019); https://doi.org/10.1002/eem2.12038
- W.B. Lu, X.Y. Qin, S. Liu, G.H. Chang, Y.W. Zhang, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi and X.P. Sun, Anal. Chem., 84, 5351 (2012); https://doi.org/10.1021/ac3007939
- Y. Liu, Y. Zhao and Y. Zhang, Sens. Actuators B Chem., 196, 647 (2014); https://doi.org/10.1016/j.snb.2014.02.053
- P.K. Sarswat and M.L. Free, Phys. Chem. Chem. Phys., 17, 27642 (2015); https://doi.org/10.1039/C5CP04782J
- X. Feng, Y. Jiang, J. Zhao, M. Miao, S. Cao, J. Fang and L. Shi, RSC Adv., 5, 31250 (2015); https://doi.org/10.1039/C5RA02271A
- L. Janus, M. Piatkowski, J. Radwan-Praglowska, D. Bogdal and D. Matysek, Nanomaterials, 9, 274 (2019); https://doi.org/10.3390/nano9020274
- R. Atchudan, T.N. Edison, K.R. Aseer, S. Perumal, N. Karthik and
- Y.R. Lee, Biosens. Bioelectron., 99, 303 (2018);
- https://doi.org/10.1016/j.bios.2017.07.076
- D. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan and X. Zhang, Sens. Actuators B Chem., 277, 373 (2018); https://doi.org/10.1016/j.snb.2018.09.031
- Z. Peng, Y. Zhou, C. Ji, J. Pardo, K.J. Mintz, R.R. Pandey, C.C. Chusuei, R.M. Graham, G. Yan and R.M. Leblanc, Nanomaterials, 10, 1560 (2020); https://doi.org/10.3390/nano10081560
- A. Saengsrichan, C. Saikate, P. Silasana, P. Khemthong, W. Wanmolee, J. Phanthasri, S. Youngjan, P. Posoknistakul, N. Laosiripojana, K.C.-W. Wu, S. Ratchahat and C. Sakdaronnarong, Int. J. Mol. Sci., 23, 5001 (2022); https://doi.org/10.3390/ijms23095001
- Y. Yang, D. Huo, H. Wu, X. Wang, J. Yang, M. Bian, Y. Ma and C. Hou, Sens. Actuators B Chem., 274, 296 (2018); https://doi.org/10.1016/j.snb.2018.07.130
- Q. Wang, X. Liu, L. Zhang and Y. Lv, Analyst, 137, 5392 (2012); https://doi.org/10.1039/c2an36059d
- R. Purbia and S. Paria, Biosens. Bioelectron., 79, 467 (2016); https://doi.org/10.1016/j.bios.2015.12.087
- R. Liu, J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu and P. Liu, RSC Adv., 5, 4428 (2015); https://doi.org/10.1039/C4RA12077A
- J. Gong, X. An and X. Yan, New J. Chem., 38, 1376 (2014); https://doi.org/10.1039/C3NJ01320K
- B. Tian, T. Fu, Y. Wan, Y. Ma, Y. Wang, Z. Feng and Z. Jiang, J. Nanobiotechnology, 19, 456 (2021); https://doi.org/10.1186/s12951-021-01211-w
- G. Dan, P. Zhang, L. Zhang, H. Liu, Z. Pu and S. Shang, Opt. Mater., 8, 272 (2018); https://doi.org/10.1016/j.optmat.2018.06.012
- X. Liu, T. Li, Y. Hou, Q. Wu, J. Yi and G. Zhang, RSC Adv., 6, 11711 (2016); https://doi.org/10.1039/C5RA23081K
- X. Qin, W. Lu, A.M. Asiri, A.O. Al-Youbi and X. Sun, Sens. Actuators B Chem., 184, 156 (2013); https://doi.org/10.1016/j.snb.2013.04.079
- Y. Feng, D. Zhong, H. Miao and X. Yang, Talanta, 140, 128 (2015); https://doi.org/10.1016/j.talanta.2015.03.038
- V. Ramanan, S.K. Thiyagarajan, K. Raji, R. Suresh, R. Sekar and P. Ramamurthy, ACS Sustain. Chem. Eng., 4, 4724 (2016); https://doi.org/10.1021/acssuschemeng.6b00935
- W.L. Ang, C.A.L. Boon Mee, N.S. Sambudi, A.W. Mohammad, C.P. Leo, E. Mahmoudi, M. Ba-Abbad and A. Benamor, Sci. Rep., 10, 21199 (2020); https://doi.org/10.1038/s41598-020-78322-1
- C. Zhao, X. Li, C. Cheng and Y. Yang, Microchem. J., 147, 183 (2019); https://doi.org/10.1016/j.microc.2019.03.029
- B. Zhi, M.J. Gallagher, B.P. Frank, T.Y. Lyons, T.A. Qiu, J. Da, A.C. Mensch, R.J. Hamers, Z. Rosenzweig, D.H. Fairbrother and C.L. Haynes, Carbon, 129, 438 (2018); https://doi.org/10.1016/j.carbon.2017.12.004
- H.J. Yashwanth, S.R. Rondiya, N.Y. Dzade, S.D. Dhole, D.M. Phase and K. Hareesh, Vacuum, 180, 109589 (2020); https://doi.org/10.1016/j.vacuum.2020.109589
- R. Zhang, Y.B. Liu, L. Yu, Z. Li and S.Q. Sun, Nanotechnology, 24, 225601 (2013); https://doi.org/10.1088/0957-4484/24/22/225601
- A. Sachdev and P. Gopinath, Analyst, 140, 4260 (2015); https://doi.org/10.1039/C5AN00454C
- X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng and Y. Dou, Biosens. Bioelectron., 60, 292 (2014); https://doi.org/10.1016/j.bios.2014.04.046
- Y. Zhou, P.Y. Liyanage, D.L. Geleroff, Z. Peng, K.J. Mintz, S.D. Hettiarachchi, R.R. Pandey, C.C. Chusuei, P.L. Blackwelder and R.M. Leblanc, ChemPhysChem, 19, 2589 (2018); https://doi.org/10.1002/cphc.201800248
- Z. Gao, X. Wang, J. Chang, D. Wu, L. Wang, X. Liu, F. Xu, Y. Guo and K. Jiang, RSC Adv., 5, 48665 (2015); https://doi.org/10.1039/C5RA05365J
- F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban and J. Feldmann, Nano Lett., 17, 7710 (2017); https://doi.org/10.1021/acs.nanolett.7b03863
- N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.M. Titirici and A. Sapelkin, Sci. Rep., 8, 6559 (2018); https://doi.org/10.1038/s41598-018-25012-8
- M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida and A. Ishitani, Appl. Phys. Lett., 67, 694 (1995); https://doi.org/10.1063/1.115206
- H. Liu, Y. Zhang and C. Huang, J. Pharm. Anal., 9, 127 (2019); https://doi.org/10.1016/j.jpha.2018.10.001
- C.J. Reckmeier, J. Schneider, A.S. Susha and A.L. Rogach, Opt. Express, 24, A312 (2016); https://doi.org/10.1364/OE.24.00A312
- L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao and S.P. Lau, ACS Nano, 6, 5102 (2012); https://doi.org/10.1021/nn300760g
- J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, S.A. Vithayathil, B.A. Kaipparettu, G. Gao, A.A. Marti, T. Hayashi, J.-J. Zhu and P.M. Ajayan, Nano Lett., 12, 844 (2012); https://doi.org/10.1021/nl2038979
- Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, Adv. Mater., 23, 776 (2011); https://doi.org/10.1002/adma.201003819
- Y. Xie, D. Cheng, X. Liu and A. Han, Sensors, 19, 3169 (2019); https://doi.org/10.3390/s19143169
- M.P. Sk, A. Jaiswal, A. Paul, S.S. Ghosh and A. Chattopadhyay, Sci. Rep., 2, 383 (2012); https://doi.org/10.1038/srep00383
- B. De and N. Karak, RSC Adv., 3, 8286 (2013); https://doi.org/10.1039/c3ra00088e
- A.B. Siddique, A.K. Pramanick, S. Chatterjee and M. Ray, Sci. Rep., 8, 9770 (2018); https://doi.org/10.1038/s41598-018-28021-9
- M. Jorns and D. Pappas, Nanomaterials, 11, 1448 (2021); https://doi.org/10.3390/nano11061448
- S. Safranko, D. Goman, A. Stankovic, M. Medvidovic-Kosanovic, T. Moslavac, I. Jerkovic and S. Jokic, Chemosensors, 9, 138 (2021); https://doi.org/10.3390/chemosensors9060138
- Y. Guo, L. Zhang, S. Zhang, Y. Yang, X. Chen and M. Zhang, Biosens. Bioelectron., 63, 61 (2015); https://doi.org/10.1016/j.bios.2014.07.018
- P. Lv, Y. Yao, H. Zhou, J. Zhang, Z. Pang, K. Ao, Y. Cai and Q. Wei, Nanotechnology, 28, 165502 (2017); https://doi.org/10.1088/1361-6528/aa6320
- J. Jana, M. Ganguly, K.R.S. Chandrakumar, G. Mohan Rao and T. Pal, Langmuir, 33, 573 (2017); https://doi.org/10.1021/acs.langmuir.6b04100
- R. Bao, Z. Chen, Z. Zhao, X. Sun, J. Zhang, L. Hou and C. Yuan, Nanomaterials, 8, 386 (2018); https://doi.org/10.3390/nano8060386
- W. Zou, X. Ma and P. Zheng, Cellulose, 27, 2099 (2020); https://doi.org/10.1007/s10570-019-02926-8
- Y.S. Xia and C.-Q. Zhu, Talanta, 75, 215 (2007); https://doi.org/10.1016/j.talanta.2007.11.008
- C. Wang, C. Wang, P. Xu, A. Li, Y. Chen and K. Zhuo, J. Mater. Sci., 51, 861 (2016); https://doi.org/10.1007/s10853-015-9410-5
- J.R. Bhamore, S. Jha, R.K. Singhal, T.J. Park and S.K. Kailasa, J. Mol. Liq., 264, 9 (2018); https://doi.org/10.1016/j.molliq.2018.05.041
- Z. Ramezani, M. Qorbanpour and N. Rahbar, Colloids Surf. A Physicochem. Eng. Asp., 549, 58 (2018); https://doi.org/10.1016/j.colsurfa.2018.04.006
- N. Architha, M. Ragupathi, C. Shobana, T. Selvankumar, P. Kumar, Y.S. Lee and R.K. Selvan, Environ. Res., 199, 111263 (2021); https://doi.org/10.1016/j.envres.2021.111263
- H. Xu, X. Yang, G. Li, C. Zhao and X. Liao, J. Agric. Food Chem., 63, 6714 (2015); https://doi.org/10.1021/acs.jafc.5b02319
- Z. Han, H. Zhang, L. He, S. Pan, H. Liu and X. Hu, Microchem. J., 146, 300 (2019); https://doi.org/10.1016/j.microc.2019.01.024
- Y. Song, X. Yan, Z. Li, L. Qu, C. Zhu, R. Ye, S. Li, D. Du and Y. Lin, J. Mater. Chem. B Mater. Biol. Med., 6, 3181 (2018); https://doi.org/10.1039/C8TB00116B
- W. Wang, Y.C. Lu, H. Huang, A.J. Wang, J.R. Chen and J.J. Feng, J. Biosens. Bioelectron., 64, 517 (2015); https://doi.org/10.1016/j.bios.2014.09.066
- Q. Zhang, J. Liang, L. Zhao, Y. Wang, Y. Zheng, Y. Wu and L. Jiang, Front. Chem., 8, 665 (2020); https://doi.org/10.3389/fchem.2020.00665
- Y. Yang, D. Huo, H. Wu, X. Wang, J. Yang, M. Bian, Y. Ma and C. Hou, Sens. Actuators B Chem., 274, 296 (2018); https://doi.org/10.1016/j.snb.2018.07.130
- H. Li, C. Sun, R. Vijayaraghavan, F. Zhou, X. Zhang and D.R. MacFarlane, Carbon, 104, 33 (2016); https://doi.org/10.1016/j.carbon.2016.03.040
- R.J. Forster, P. Bertoncello and T.E. Keyes, Annu. Rev. Anal. Chem., 2, 359 (2009); https://doi.org/10.1146/annurev-anchem-060908-155305
- M.M. Richter, Chem. Rev., 104, 3003 (2004); https://doi.org/10.1021/cr020373d
- J.D. Luttmer and A.J. Bard, J. Electrochem. Soc., 126, 414 (1979); https://doi.org/10.1149/1.2129054
- C. Venkateswara Raju and S. Senthil Kumar, Chem. Commun., 53, 6593 (2017); https://doi.org/10.1039/C7CC03349D
- B. Sun, H. Qi, F. Ma, Q. Gao, C. Zhang and W. Miao, Anal. Chem., 82, 5046 (2010); https://doi.org/10.1021/ac9029289
- J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn and M. Titirici, Angew. Chem. Int. Ed., 54, 4463 (2015); https://doi.org/10.1002/anie.201409290
- H. Zhang, Y. Wang, P. Liu, Y. Li, H.G. Yang, T. An, P.-K. Wong, D. Wang, Z. Tang and H. Zhao, Nano Energy, 13, 124 (2015); https://doi.org/10.1016/j.nanoen.2015.01.046
- A. Marinovic, L.S. Kiat, S. Dunn, M.-M. Titirici and J. Briscoe, ChemSusChem, 10, 1004 (2017); https://doi.org/10.1002/cssc.201601741
- H. Choi, S.-J. Ko, Y. Choi, P. Joo, T. Kim, B.R. Lee, J.W. Jung, H.J. Choi, M. Cha, J.R. Jeong, I.-W. Hwang, M.H. Song, B.-S. Kim and J.Y. Kim, Nat. Photonics, 7, 732 (2013); https://doi.org/10.1038/nphoton.2013.181
- S. Yang, P. He, T. Yuan, Y. Li, X. Li, Y. Zhang, L. Fan, Y. Shi and T. Meng, Nanoscale, 12, 4826 (2020); https://doi.org/10.1039/C9NR10958G
- R. Sha, S. Jones, N. Vishnu, B. Soundiraraju, and S. Badhulika, Electroanalysis, 30, 2228 (2018); https://doi.org/10.1002/elan.201800255
- J. Kim, M. Jeon, K. Paeng and I. Paeng, Anal. Chim. Acta, 619, 87 (2008); https://doi.org/10.1016/j.aca.2008.02.042
- N. Speed, J. Heinrich, M. Kennedy, R. Vaughan, J. Javitch, S. Russo, C. Lindsley, K. Niswender and A. Galli, ACS Chem.Neurosci., 1, 476 (2010); https://doi.org/10.1021/cn100031t
- G. Jiang, T. Jiang, H. Zhou, J. Yao and X. Kong, RSC Adv., 5, 9064 (2015); https://doi.org/10.1039/C4RA16773B
- G. Kandasamy, J. Carbon Res. C., 5, 24 (2019); https://doi.org/10.3390/c5020024
- S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. AlYoubi and X. Sun, Adv. Mater., 24, 2037 (2012); https://doi.org/10.1002/adma.201290148
- S. Dey, P. Chithaiah, S. Belawadi, K. Biswas and C.N.R. Rao, J. Mater. Res., 29, 383 (2014); https://doi.org/10.1557/jmr.2013.295
- H. Zhang, Y. Li, X. Liu, P. Liu, Y. Wang, T. An, H. Yang, D. Jing and H. Zhao, Environ. Sci. Technol. Lett., 1, 87 (2013); https://doi.org/10.1021/ez400137j
- X. Jiang, D. Qin, G. Mo, J. Feng, C. Yu, W. Mo and B. Deng, J. Pharm. Biomed. Anal., 164, 514 (2019); https://doi.org/10.1016/j.jpba.2018.11.025
- Y. Chen, Y. Wu , B. Weng, B. Wang and C. Li, Sens. Actuators B Chem., 223, 689 (2016).
- https://doi.org/10.1016/j.snb.2015.09.081
- S. Xu, Y. Liu, H. Yang, K. Zhao, J. Li and A. Deng, Anal. Chim. Acta, 964, 150 (2017); https://doi.org/10.1016/j.aca.2017.01.037
- Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou and L. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 854 (2017); https://doi.org/10.1016/j.saa.2016.10.039
- R. Bao, Z. Chen, Z. Zhao, X. Sun, J. Zhang, L. Hou and C. Yuan, Nanomaterials, 8, 386 (2018); https://doi.org/10.3390/nano8060386
- Y. Liu, X. Gong, W. Dong, R. Zhou, S. Shuang and C. Dong, Talanta, 183, 61 (2018); https://doi.org/10.1016/j.talanta.2018.02.060
- V.M. Naik, D.B. Gunjal, A.H. Gore, S.P. Pawar, S.T. Mahanwar, P.V. Anbhule and G.B. Kolekar, Diam. Relat. Mater., 88, 262 (2018); https://doi.org/10.1016/j.diamond.2018.07.018
- Y. Hu, J. Yang, J. Tian, L. Jia and J.S. Yu, Carbon, 77, 775 (2014); https://doi.org/10.1016/j.carbon.2014.05.081
- D. Shi, F. Yan, T. Zheng, Y. Wang, X. Zhou and L. Chen, RSC Adv., 5, 98492 (2015); https://doi.org/10.1039/C5RA18800H
- K.M. Omer and A.Q. Hassan, Microchim. Acta, 184, 2063 (2017); https://doi.org/10.1007/s00604-017-2196-1
- G. Zuo, A. Xie, J. Li, T. Su, X. Pan and W. Dong, J. Phys. Chem. C, 121, 26558 (2017).
- https://doi.org/10.1021/acs.jpcc.7b10179
- A.B. Bourlinos, G. Trivizas, M.A. Karakassides, A. Kouloumpis, M. Baikousi, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, I. Papagiannouli, P. Aloukos and S. Courisef, Carbon, 83, 173 (2015); https://doi.org/10.1016/j.carbon.2014.11.032
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec and S.-Z. Qiao, Sci. Adv., 6, eaba4098 (2020); https://doi.org/10.1126/sciadv.aba4098
- H. Yang, S. Ye, J. Zhou and T. Liang, Front Chem., 7, 274 (2019); https://doi.org/10.3389/fchem.2019.00274
- H. Ru, N. Bai, K. Xiang, W. Zhou, H. Chen and X.S. Zhao, Electrochim. Acta, 194, 10 (2016); https://doi.org/10.1016/j.electacta.2016.02.083
- E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton and D. Mitlin, ACS Nano, 8, 7115 (2014); https://doi.org/10.1021/nn502045y
- V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham and S. Gopukumar, Electrochim. Acta, 190, 337 (2016); https://doi.org/10.1016/j.electacta.2016.01.006
- S. Wang, H. Wang, R. Zhang, L. Zhao, X. Wu, H. Xie, J. Zhang and H. Sun, J. Alloys Compd., 746, 567 (2018); https://doi.org/10.1016/j.jallcom.2018.02.293
- P. Arumugam, S.R. Elumali, K. Raman, S. A.M, T. Purushotham and R. SubashChandrabose, ECS Trans., 107, 16547 (2022); https://doi.org/10.1149/10701.16547ecst
- C.C. Yang and S.J. Lin, J. Power Sources, 112, 497 (2002); https://doi.org/10.1016/S0378-7753(02)00438-X
- C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang and H. Zhao, Chem. Eng. J., 334, 1270 (2018); https://doi.org/10.1016/j.cej.2017.11.069
- R. Liu, D. Wu, X. Feng and K. Müllen, Angew. Chem. Int. Ed., 49, 2565 (2010); https://doi.org/10.1002/anie.200907289
- W. Yang, T.P. Fellinger and M. Antonietti, J. Am. Chem. Soc., 133, 206 (2011); https://doi.org/10.1021/ja108039j
- Y. Han, D. Tang, Y. Yang, C. Li, W. Kong, H. Huang, Y. Liu and Z. Kang, Nanoscale, 7, 5955 (2015); https://doi.org/10.1039/C4NR07116F
- V.N. Mehta, S.S. Chettiar, J.R. Bhamore, S.K. Kailasa and R.M. Patel, J. Fluoresc., 27, 111 (2017); https://doi.org/10.1007/s10895-016-1939-4
- S.L. D’Souza, B. Deshmukh, J.R. Bhamore, K.A. Rawat, N. Lenka and S.K. Kailasa, RSC Adv., 6, 12169 (2016); https://doi.org/10.1039/C5RA24621K
- C.-L. Shen, H.-R. Liu, Q. Lou, F. Wang, K.-K. Liu, L. Dong and C.-X. Shan, Theranostics, 12, 2860 (2022); https://doi.org/10.7150/thno.70721
- Z. Wang, H. Liao, H. Wu, B. Wang, H. Zhao and M. Tan, Anal. Methods, 20, 8911 (2015); https://doi.org/10.1039/C5AY01978H
- T.C. Wareing, P. Gentile and A.N. Phan, ACS Nano, 15, 15471 (2021); https://doi.org/10.1021/acsnano.1c03886
References
K.J. Singh, T. Ahmed, P. Gautam, A.S. Sadhu, D.-H. Lien, S.-C. Chen, Y.-L. Chueh and H.-C. Kuo, Nanomaterials, 11, 1549 (2021); https://doi.org/10.3390/nano11061549
J.H. Shen, Y.H. Zhu, C. Chen, X.L. Yang and C.Z. Li, Chem. Commun., 47, 2580 (2011); https://doi.org/10.1039/C0CC04812G
J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu and K.P. Loh, Nat. Nanotechnol., 6, 247 (2011); https://doi.org/10.1038/nnano.2011.30
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll and Q. Li, Angew. Chem. Int. Ed., 48, 4598 (2009); https://doi.org/10.1002/anie.200900652
H. Ming, Z. Ma, Y. Liu, K.M. Pan, H. Yu, F. Wang and Z.H. Kang, Dalton Trans., 41, 9526 (2012); https://doi.org/10.1039/c2dt30985h
M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos and N. Hildebrandt, Sensor Actust. Biol. Chem., 244, 425 (2017); https://doi.org/10.1016/j.snb.2017.01.003
X.Y. Xu, R. Ray, Y. Gu, L. Ploehn, L. Gearheart, K. Raker and W.A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004); https://doi.org/10.1021/ja040082h
Y.Q. Zhang, D.K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.L. Hong, Q.X. Yan, K. Yu and S.M. Huang, J. Mater. Chem., 22, 16714 (2012); https://doi.org/10.1039/c2jm32973e
L. Zheng, Y. Chi, Y. Dong, J. Lin and B. Wang, J. Am. Chem. Soc., 131, 4564 (2009); https://doi.org/10.1021/ja809073f
Z. Ma, H. Ming, H. Huang, Y. Liu and Z.H. Kang, New J. Chem., 36, 861 (2012); https://doi.org/10.1039/c2nj20942j
S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi and X. Sun, Adv. Mater., 24, 2037 (2012); https://doi.org/10.1002/adma.201200164
F. Wang, Z. Xie, H. Zhang, C.Y. Liu and Y.G. Zhang, Adv. Funct. Mater., 21, 1027 (2011); https://doi.org/10.1002/adfm.201002279
J. Chen, X. Wang, Y. Huang, S. Lv, X. Cao, J. Yun and D. Cao, Eng. Sci., 5, 30 (2019); https://doi.org/10.30919/es8d666
J. Di, J. Xia, X. Chen, M. Ji, S. Yin, Q. Zhang and H. Li, Carbon, 114, 601 (2017); https://doi.org/10.1016/j.carbon.2016.12.030
T. Liu, J.X. Dong, S.G. Liu, N. Li, S.M. Lin, Y.Z. Fan, J.L. Lei, H.Q. Luo and N.B. Li, J. Hazard. Mater., 322, 430 (2017); https://doi.org/10.1016/j.jhazmat.2016.10.034
R. Zhang and W. Chen, Biosens. Bioelectron., 55, 83 (2014); https://doi.org/10.1016/j.bios.2013.11.074
D. Pooja, S. Saini, A. Thakur, B. Kumar, S. Tyagi and M.K. Nayak, J. Hazard. Mater., 328, 117 (2017); https://doi.org/10.1016/j.jhazmat.2017.01.015
H.-W. Chu, B. Unnikrishnan, A. Anand, Y.-W. Lin and C.-C. Huang, J. Food Drug Anal., 28, 539 (2020); https://doi.org/10.38212/2224-6614.1269
M. Lin, H.Y. Zou, T. Yang, Z.X. Liu, H. Liu and C.Z. Huang, Nanoscale, 8, 2999 (2016); https://doi.org/10.1039/C5NR08177G
B.-C. Yin, B.-C. Ye, H. Wang, Z. Zhu and W. Tan, Chem. Commun., 48, 1248 (2012); https://doi.org/10.1039/C1CC15639J
H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen and X. Chen, Anal. Chem., 86, 9846 (2014); https://doi.org/10.1021/ac502446m
C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang and H. Feng, J. Mater. Chem. B Mater. Biol. Med., 5, 1971 (2017); https://doi.org/10.1039/C6TB03361J
P. Yuan and D.R. Walt, Anal. Chem., 59, 2391 (1987); https://doi.org/10.1021/ac00146a015
S. Chen, Y.L. Yu and J.H. Wang, Anal. Chim. Acta, 999, 13 (2018); https://doi.org/10.1016/j.aca.2017.10.026
Q. Zhang, C. Zhang, Z. Li, J. Ge, C. Li, C. Dong and S. Shuang, RSC Adv., 5, 95054 (2015); https://doi.org/10.1039/C5RA18176C
C. Jiang, H. Wu, X. Song, X. Ma, J. Wang and M. Tan, Talanta, 127, 68 (2014); https://doi.org/10.1016/j.talanta.2014.01.046
V. Sharma, P. Tiwari and S.M. Mobin, J. Mater. Chem. B Mater. Biol. Med., 5, 8904 (2017); https://doi.org/10.1039/C7TB02484C
X. Zhang, M. Jiang, N. Niu, Z. Chen, S. Li, S. Liu and J. Li, ChemSusChem, 11, 11 (2018); https://doi.org/10.1002/cssc.201701847
J. Zhang, H. Wang, Y. Xiao, J. Tang, C. Liang, F. Li, H. Dong and W. Xu, Nanoscale Res. Lett., 12, 611 (2017); https://doi.org/10.1186/s11671-017-2369-1
Y. Zhou, Y. Liu, Y. Li, Z. He, Q. Xu, Y. Chen, J. Street, H. Guo and M. Nelles, RSC Adv., 8, 23657 (2018); https://doi.org/10.1039/C8RA03272F
L. Ding, X. Wang, J. Li, J. Huang and Z. Li, J. Technol. Mater. Sci. Ed., 33, 1546 (2018).
Y. Guo, L. Zhang, F. Cao and Y. Leng, Sci. Rep., 6, 35795 (2016); https://doi.org/10.1038/srep35795
C. Kang, Y. Huang, H. Yang, X.F. Yan and Z.P. Chen, Nanomaterials, 10, 2316 (2020); https://doi.org/10.3390/nano10112316
V. Manikandan and N.Y. Lee, Environ. Res., 212, 113283 (2022); https://doi.org/10.1016/j.envres.2022.113283
L. Wang and H.S. Zhou, Anal. Chem., 86, 8902 (2014); https://doi.org/10.1021/ac502646x
L. Cui, X. Ren, M. Sun, H. Liu and L. Xia, Nanomaterials, 11, 3419 (2021); https://doi.org/10.3390/nano11123419
H. Lu, C. Li, H. Wang, X. Wang and S. Xu, ACS Omega, 4, 21500 (2019); https://doi.org/10.1021/acsomega.9b03198
C.L. Li, C.M. Ou, C.C. Huang, W.C. Wu, Y.P. Chen, T.E. Lin, L.C. Ho, C.W. Wang, C.C. Shih, H.C. Zhou, Y.C. Lee, W.F. Tzeng, T.J. Chiou, S.T. Chu, J. Cang and H.T. Chang, J. Mater. Chem. B, 2, 4564 (2014); https://doi.org/10.1039/c4tb00216d
N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen and J. Wang, Biosens. Bioelectron., 85, 68 (2014); https://doi.org/10.1016/j.bios.2016.04.089
G. Oza, K. Oza, S. Pandey, S. Shinde, A. Mewada, M. Thakur, M. Sharon and M. Sharon, Fluorescence, 25, 9 (2015); https://doi.org/10.1007/s10895-014-1477-x
J. Zhang, Y. Yuan, G. Liang and S. H. Yu, Adv. Sci., 2, 1500002 (2015); https://doi.org/10.1002/advs.201500002
B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang and S. Yao, Analyst, 138, 6551 (2013); https://doi.org/10.1039/C3AN01003A
W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu and B. Yang, Energy Environ. Materials, 2, 172 (2019); https://doi.org/10.1002/eem2.12038
W.B. Lu, X.Y. Qin, S. Liu, G.H. Chang, Y.W. Zhang, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi and X.P. Sun, Anal. Chem., 84, 5351 (2012); https://doi.org/10.1021/ac3007939
Y. Liu, Y. Zhao and Y. Zhang, Sens. Actuators B Chem., 196, 647 (2014); https://doi.org/10.1016/j.snb.2014.02.053
P.K. Sarswat and M.L. Free, Phys. Chem. Chem. Phys., 17, 27642 (2015); https://doi.org/10.1039/C5CP04782J
X. Feng, Y. Jiang, J. Zhao, M. Miao, S. Cao, J. Fang and L. Shi, RSC Adv., 5, 31250 (2015); https://doi.org/10.1039/C5RA02271A
L. Janus, M. Piatkowski, J. Radwan-Praglowska, D. Bogdal and D. Matysek, Nanomaterials, 9, 274 (2019); https://doi.org/10.3390/nano9020274
R. Atchudan, T.N. Edison, K.R. Aseer, S. Perumal, N. Karthik and
Y.R. Lee, Biosens. Bioelectron., 99, 303 (2018);
https://doi.org/10.1016/j.bios.2017.07.076
D. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan and X. Zhang, Sens. Actuators B Chem., 277, 373 (2018); https://doi.org/10.1016/j.snb.2018.09.031
Z. Peng, Y. Zhou, C. Ji, J. Pardo, K.J. Mintz, R.R. Pandey, C.C. Chusuei, R.M. Graham, G. Yan and R.M. Leblanc, Nanomaterials, 10, 1560 (2020); https://doi.org/10.3390/nano10081560
A. Saengsrichan, C. Saikate, P. Silasana, P. Khemthong, W. Wanmolee, J. Phanthasri, S. Youngjan, P. Posoknistakul, N. Laosiripojana, K.C.-W. Wu, S. Ratchahat and C. Sakdaronnarong, Int. J. Mol. Sci., 23, 5001 (2022); https://doi.org/10.3390/ijms23095001
Y. Yang, D. Huo, H. Wu, X. Wang, J. Yang, M. Bian, Y. Ma and C. Hou, Sens. Actuators B Chem., 274, 296 (2018); https://doi.org/10.1016/j.snb.2018.07.130
Q. Wang, X. Liu, L. Zhang and Y. Lv, Analyst, 137, 5392 (2012); https://doi.org/10.1039/c2an36059d
R. Purbia and S. Paria, Biosens. Bioelectron., 79, 467 (2016); https://doi.org/10.1016/j.bios.2015.12.087
R. Liu, J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu and P. Liu, RSC Adv., 5, 4428 (2015); https://doi.org/10.1039/C4RA12077A
J. Gong, X. An and X. Yan, New J. Chem., 38, 1376 (2014); https://doi.org/10.1039/C3NJ01320K
B. Tian, T. Fu, Y. Wan, Y. Ma, Y. Wang, Z. Feng and Z. Jiang, J. Nanobiotechnology, 19, 456 (2021); https://doi.org/10.1186/s12951-021-01211-w
G. Dan, P. Zhang, L. Zhang, H. Liu, Z. Pu and S. Shang, Opt. Mater., 8, 272 (2018); https://doi.org/10.1016/j.optmat.2018.06.012
X. Liu, T. Li, Y. Hou, Q. Wu, J. Yi and G. Zhang, RSC Adv., 6, 11711 (2016); https://doi.org/10.1039/C5RA23081K
X. Qin, W. Lu, A.M. Asiri, A.O. Al-Youbi and X. Sun, Sens. Actuators B Chem., 184, 156 (2013); https://doi.org/10.1016/j.snb.2013.04.079
Y. Feng, D. Zhong, H. Miao and X. Yang, Talanta, 140, 128 (2015); https://doi.org/10.1016/j.talanta.2015.03.038
V. Ramanan, S.K. Thiyagarajan, K. Raji, R. Suresh, R. Sekar and P. Ramamurthy, ACS Sustain. Chem. Eng., 4, 4724 (2016); https://doi.org/10.1021/acssuschemeng.6b00935
W.L. Ang, C.A.L. Boon Mee, N.S. Sambudi, A.W. Mohammad, C.P. Leo, E. Mahmoudi, M. Ba-Abbad and A. Benamor, Sci. Rep., 10, 21199 (2020); https://doi.org/10.1038/s41598-020-78322-1
C. Zhao, X. Li, C. Cheng and Y. Yang, Microchem. J., 147, 183 (2019); https://doi.org/10.1016/j.microc.2019.03.029
B. Zhi, M.J. Gallagher, B.P. Frank, T.Y. Lyons, T.A. Qiu, J. Da, A.C. Mensch, R.J. Hamers, Z. Rosenzweig, D.H. Fairbrother and C.L. Haynes, Carbon, 129, 438 (2018); https://doi.org/10.1016/j.carbon.2017.12.004
H.J. Yashwanth, S.R. Rondiya, N.Y. Dzade, S.D. Dhole, D.M. Phase and K. Hareesh, Vacuum, 180, 109589 (2020); https://doi.org/10.1016/j.vacuum.2020.109589
R. Zhang, Y.B. Liu, L. Yu, Z. Li and S.Q. Sun, Nanotechnology, 24, 225601 (2013); https://doi.org/10.1088/0957-4484/24/22/225601
A. Sachdev and P. Gopinath, Analyst, 140, 4260 (2015); https://doi.org/10.1039/C5AN00454C
X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng and Y. Dou, Biosens. Bioelectron., 60, 292 (2014); https://doi.org/10.1016/j.bios.2014.04.046
Y. Zhou, P.Y. Liyanage, D.L. Geleroff, Z. Peng, K.J. Mintz, S.D. Hettiarachchi, R.R. Pandey, C.C. Chusuei, P.L. Blackwelder and R.M. Leblanc, ChemPhysChem, 19, 2589 (2018); https://doi.org/10.1002/cphc.201800248
Z. Gao, X. Wang, J. Chang, D. Wu, L. Wang, X. Liu, F. Xu, Y. Guo and K. Jiang, RSC Adv., 5, 48665 (2015); https://doi.org/10.1039/C5RA05365J
F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban and J. Feldmann, Nano Lett., 17, 7710 (2017); https://doi.org/10.1021/acs.nanolett.7b03863
N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.M. Titirici and A. Sapelkin, Sci. Rep., 8, 6559 (2018); https://doi.org/10.1038/s41598-018-25012-8
M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida and A. Ishitani, Appl. Phys. Lett., 67, 694 (1995); https://doi.org/10.1063/1.115206
H. Liu, Y. Zhang and C. Huang, J. Pharm. Anal., 9, 127 (2019); https://doi.org/10.1016/j.jpha.2018.10.001
C.J. Reckmeier, J. Schneider, A.S. Susha and A.L. Rogach, Opt. Express, 24, A312 (2016); https://doi.org/10.1364/OE.24.00A312
L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao and S.P. Lau, ACS Nano, 6, 5102 (2012); https://doi.org/10.1021/nn300760g
J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, S.A. Vithayathil, B.A. Kaipparettu, G. Gao, A.A. Marti, T. Hayashi, J.-J. Zhu and P.M. Ajayan, Nano Lett., 12, 844 (2012); https://doi.org/10.1021/nl2038979
Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, Adv. Mater., 23, 776 (2011); https://doi.org/10.1002/adma.201003819
Y. Xie, D. Cheng, X. Liu and A. Han, Sensors, 19, 3169 (2019); https://doi.org/10.3390/s19143169
M.P. Sk, A. Jaiswal, A. Paul, S.S. Ghosh and A. Chattopadhyay, Sci. Rep., 2, 383 (2012); https://doi.org/10.1038/srep00383
B. De and N. Karak, RSC Adv., 3, 8286 (2013); https://doi.org/10.1039/c3ra00088e
A.B. Siddique, A.K. Pramanick, S. Chatterjee and M. Ray, Sci. Rep., 8, 9770 (2018); https://doi.org/10.1038/s41598-018-28021-9
M. Jorns and D. Pappas, Nanomaterials, 11, 1448 (2021); https://doi.org/10.3390/nano11061448
S. Safranko, D. Goman, A. Stankovic, M. Medvidovic-Kosanovic, T. Moslavac, I. Jerkovic and S. Jokic, Chemosensors, 9, 138 (2021); https://doi.org/10.3390/chemosensors9060138
Y. Guo, L. Zhang, S. Zhang, Y. Yang, X. Chen and M. Zhang, Biosens. Bioelectron., 63, 61 (2015); https://doi.org/10.1016/j.bios.2014.07.018
P. Lv, Y. Yao, H. Zhou, J. Zhang, Z. Pang, K. Ao, Y. Cai and Q. Wei, Nanotechnology, 28, 165502 (2017); https://doi.org/10.1088/1361-6528/aa6320
J. Jana, M. Ganguly, K.R.S. Chandrakumar, G. Mohan Rao and T. Pal, Langmuir, 33, 573 (2017); https://doi.org/10.1021/acs.langmuir.6b04100
R. Bao, Z. Chen, Z. Zhao, X. Sun, J. Zhang, L. Hou and C. Yuan, Nanomaterials, 8, 386 (2018); https://doi.org/10.3390/nano8060386
W. Zou, X. Ma and P. Zheng, Cellulose, 27, 2099 (2020); https://doi.org/10.1007/s10570-019-02926-8
Y.S. Xia and C.-Q. Zhu, Talanta, 75, 215 (2007); https://doi.org/10.1016/j.talanta.2007.11.008
C. Wang, C. Wang, P. Xu, A. Li, Y. Chen and K. Zhuo, J. Mater. Sci., 51, 861 (2016); https://doi.org/10.1007/s10853-015-9410-5
J.R. Bhamore, S. Jha, R.K. Singhal, T.J. Park and S.K. Kailasa, J. Mol. Liq., 264, 9 (2018); https://doi.org/10.1016/j.molliq.2018.05.041
Z. Ramezani, M. Qorbanpour and N. Rahbar, Colloids Surf. A Physicochem. Eng. Asp., 549, 58 (2018); https://doi.org/10.1016/j.colsurfa.2018.04.006
N. Architha, M. Ragupathi, C. Shobana, T. Selvankumar, P. Kumar, Y.S. Lee and R.K. Selvan, Environ. Res., 199, 111263 (2021); https://doi.org/10.1016/j.envres.2021.111263
H. Xu, X. Yang, G. Li, C. Zhao and X. Liao, J. Agric. Food Chem., 63, 6714 (2015); https://doi.org/10.1021/acs.jafc.5b02319
Z. Han, H. Zhang, L. He, S. Pan, H. Liu and X. Hu, Microchem. J., 146, 300 (2019); https://doi.org/10.1016/j.microc.2019.01.024
Y. Song, X. Yan, Z. Li, L. Qu, C. Zhu, R. Ye, S. Li, D. Du and Y. Lin, J. Mater. Chem. B Mater. Biol. Med., 6, 3181 (2018); https://doi.org/10.1039/C8TB00116B
W. Wang, Y.C. Lu, H. Huang, A.J. Wang, J.R. Chen and J.J. Feng, J. Biosens. Bioelectron., 64, 517 (2015); https://doi.org/10.1016/j.bios.2014.09.066
Q. Zhang, J. Liang, L. Zhao, Y. Wang, Y. Zheng, Y. Wu and L. Jiang, Front. Chem., 8, 665 (2020); https://doi.org/10.3389/fchem.2020.00665
Y. Yang, D. Huo, H. Wu, X. Wang, J. Yang, M. Bian, Y. Ma and C. Hou, Sens. Actuators B Chem., 274, 296 (2018); https://doi.org/10.1016/j.snb.2018.07.130
H. Li, C. Sun, R. Vijayaraghavan, F. Zhou, X. Zhang and D.R. MacFarlane, Carbon, 104, 33 (2016); https://doi.org/10.1016/j.carbon.2016.03.040
R.J. Forster, P. Bertoncello and T.E. Keyes, Annu. Rev. Anal. Chem., 2, 359 (2009); https://doi.org/10.1146/annurev-anchem-060908-155305
M.M. Richter, Chem. Rev., 104, 3003 (2004); https://doi.org/10.1021/cr020373d
J.D. Luttmer and A.J. Bard, J. Electrochem. Soc., 126, 414 (1979); https://doi.org/10.1149/1.2129054
C. Venkateswara Raju and S. Senthil Kumar, Chem. Commun., 53, 6593 (2017); https://doi.org/10.1039/C7CC03349D
B. Sun, H. Qi, F. Ma, Q. Gao, C. Zhang and W. Miao, Anal. Chem., 82, 5046 (2010); https://doi.org/10.1021/ac9029289
J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn and M. Titirici, Angew. Chem. Int. Ed., 54, 4463 (2015); https://doi.org/10.1002/anie.201409290
H. Zhang, Y. Wang, P. Liu, Y. Li, H.G. Yang, T. An, P.-K. Wong, D. Wang, Z. Tang and H. Zhao, Nano Energy, 13, 124 (2015); https://doi.org/10.1016/j.nanoen.2015.01.046
A. Marinovic, L.S. Kiat, S. Dunn, M.-M. Titirici and J. Briscoe, ChemSusChem, 10, 1004 (2017); https://doi.org/10.1002/cssc.201601741
H. Choi, S.-J. Ko, Y. Choi, P. Joo, T. Kim, B.R. Lee, J.W. Jung, H.J. Choi, M. Cha, J.R. Jeong, I.-W. Hwang, M.H. Song, B.-S. Kim and J.Y. Kim, Nat. Photonics, 7, 732 (2013); https://doi.org/10.1038/nphoton.2013.181
S. Yang, P. He, T. Yuan, Y. Li, X. Li, Y. Zhang, L. Fan, Y. Shi and T. Meng, Nanoscale, 12, 4826 (2020); https://doi.org/10.1039/C9NR10958G
R. Sha, S. Jones, N. Vishnu, B. Soundiraraju, and S. Badhulika, Electroanalysis, 30, 2228 (2018); https://doi.org/10.1002/elan.201800255
J. Kim, M. Jeon, K. Paeng and I. Paeng, Anal. Chim. Acta, 619, 87 (2008); https://doi.org/10.1016/j.aca.2008.02.042
N. Speed, J. Heinrich, M. Kennedy, R. Vaughan, J. Javitch, S. Russo, C. Lindsley, K. Niswender and A. Galli, ACS Chem.Neurosci., 1, 476 (2010); https://doi.org/10.1021/cn100031t
G. Jiang, T. Jiang, H. Zhou, J. Yao and X. Kong, RSC Adv., 5, 9064 (2015); https://doi.org/10.1039/C4RA16773B
G. Kandasamy, J. Carbon Res. C., 5, 24 (2019); https://doi.org/10.3390/c5020024
S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. AlYoubi and X. Sun, Adv. Mater., 24, 2037 (2012); https://doi.org/10.1002/adma.201290148
S. Dey, P. Chithaiah, S. Belawadi, K. Biswas and C.N.R. Rao, J. Mater. Res., 29, 383 (2014); https://doi.org/10.1557/jmr.2013.295
H. Zhang, Y. Li, X. Liu, P. Liu, Y. Wang, T. An, H. Yang, D. Jing and H. Zhao, Environ. Sci. Technol. Lett., 1, 87 (2013); https://doi.org/10.1021/ez400137j
X. Jiang, D. Qin, G. Mo, J. Feng, C. Yu, W. Mo and B. Deng, J. Pharm. Biomed. Anal., 164, 514 (2019); https://doi.org/10.1016/j.jpba.2018.11.025
Y. Chen, Y. Wu , B. Weng, B. Wang and C. Li, Sens. Actuators B Chem., 223, 689 (2016).
https://doi.org/10.1016/j.snb.2015.09.081
S. Xu, Y. Liu, H. Yang, K. Zhao, J. Li and A. Deng, Anal. Chim. Acta, 964, 150 (2017); https://doi.org/10.1016/j.aca.2017.01.037
Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou and L. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 854 (2017); https://doi.org/10.1016/j.saa.2016.10.039
R. Bao, Z. Chen, Z. Zhao, X. Sun, J. Zhang, L. Hou and C. Yuan, Nanomaterials, 8, 386 (2018); https://doi.org/10.3390/nano8060386
Y. Liu, X. Gong, W. Dong, R. Zhou, S. Shuang and C. Dong, Talanta, 183, 61 (2018); https://doi.org/10.1016/j.talanta.2018.02.060
V.M. Naik, D.B. Gunjal, A.H. Gore, S.P. Pawar, S.T. Mahanwar, P.V. Anbhule and G.B. Kolekar, Diam. Relat. Mater., 88, 262 (2018); https://doi.org/10.1016/j.diamond.2018.07.018
Y. Hu, J. Yang, J. Tian, L. Jia and J.S. Yu, Carbon, 77, 775 (2014); https://doi.org/10.1016/j.carbon.2014.05.081
D. Shi, F. Yan, T. Zheng, Y. Wang, X. Zhou and L. Chen, RSC Adv., 5, 98492 (2015); https://doi.org/10.1039/C5RA18800H
K.M. Omer and A.Q. Hassan, Microchim. Acta, 184, 2063 (2017); https://doi.org/10.1007/s00604-017-2196-1
G. Zuo, A. Xie, J. Li, T. Su, X. Pan and W. Dong, J. Phys. Chem. C, 121, 26558 (2017).
https://doi.org/10.1021/acs.jpcc.7b10179
A.B. Bourlinos, G. Trivizas, M.A. Karakassides, A. Kouloumpis, M. Baikousi, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, I. Papagiannouli, P. Aloukos and S. Courisef, Carbon, 83, 173 (2015); https://doi.org/10.1016/j.carbon.2014.11.032
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec and S.-Z. Qiao, Sci. Adv., 6, eaba4098 (2020); https://doi.org/10.1126/sciadv.aba4098
H. Yang, S. Ye, J. Zhou and T. Liang, Front Chem., 7, 274 (2019); https://doi.org/10.3389/fchem.2019.00274
H. Ru, N. Bai, K. Xiang, W. Zhou, H. Chen and X.S. Zhao, Electrochim. Acta, 194, 10 (2016); https://doi.org/10.1016/j.electacta.2016.02.083
E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton and D. Mitlin, ACS Nano, 8, 7115 (2014); https://doi.org/10.1021/nn502045y
V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham and S. Gopukumar, Electrochim. Acta, 190, 337 (2016); https://doi.org/10.1016/j.electacta.2016.01.006
S. Wang, H. Wang, R. Zhang, L. Zhao, X. Wu, H. Xie, J. Zhang and H. Sun, J. Alloys Compd., 746, 567 (2018); https://doi.org/10.1016/j.jallcom.2018.02.293
P. Arumugam, S.R. Elumali, K. Raman, S. A.M, T. Purushotham and R. SubashChandrabose, ECS Trans., 107, 16547 (2022); https://doi.org/10.1149/10701.16547ecst
C.C. Yang and S.J. Lin, J. Power Sources, 112, 497 (2002); https://doi.org/10.1016/S0378-7753(02)00438-X
C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang and H. Zhao, Chem. Eng. J., 334, 1270 (2018); https://doi.org/10.1016/j.cej.2017.11.069
R. Liu, D. Wu, X. Feng and K. Müllen, Angew. Chem. Int. Ed., 49, 2565 (2010); https://doi.org/10.1002/anie.200907289
W. Yang, T.P. Fellinger and M. Antonietti, J. Am. Chem. Soc., 133, 206 (2011); https://doi.org/10.1021/ja108039j
Y. Han, D. Tang, Y. Yang, C. Li, W. Kong, H. Huang, Y. Liu and Z. Kang, Nanoscale, 7, 5955 (2015); https://doi.org/10.1039/C4NR07116F
V.N. Mehta, S.S. Chettiar, J.R. Bhamore, S.K. Kailasa and R.M. Patel, J. Fluoresc., 27, 111 (2017); https://doi.org/10.1007/s10895-016-1939-4
S.L. D’Souza, B. Deshmukh, J.R. Bhamore, K.A. Rawat, N. Lenka and S.K. Kailasa, RSC Adv., 6, 12169 (2016); https://doi.org/10.1039/C5RA24621K
C.-L. Shen, H.-R. Liu, Q. Lou, F. Wang, K.-K. Liu, L. Dong and C.-X. Shan, Theranostics, 12, 2860 (2022); https://doi.org/10.7150/thno.70721
Z. Wang, H. Liao, H. Wu, B. Wang, H. Zhao and M. Tan, Anal. Methods, 20, 8911 (2015); https://doi.org/10.1039/C5AY01978H
T.C. Wareing, P. Gentile and A.N. Phan, ACS Nano, 15, 15471 (2021); https://doi.org/10.1021/acsnano.1c03886