Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
UV Light Photo-Degradation of Rhodamine B and Methylene Blue Dyes using Gd2O3 Nanoparticles
Corresponding Author(s) : Arputharaj Samson Nesaraj
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
The detoxification of numerous harmful and toxic contaminants as well as water treatment is done successfully by photocatalytic oxidation. The potential uses of metal oxide, which are defined as charge carriers in electronic structure, enhance its light-absorbing qualities when exposed to a particular type of radiation and enable its use as a photocatalyst. Metal oxide nanoparticles, as photocatalyst, are used in waste-water treatment in removing pollutants and the degradation of dyes, thus can render water reusable. In the current investigation, XRD and SEM studies were utilized to analyze the rare earth Gd2O3 nanoparticles that were synthesized using the chemical precipitation approach. Additionally, degradation of Rhodamine B and methylene blue in aqueous solution under UV light was used to assess the photocatalytic activity. The results indicated that the synthesized Gd2O3 material exhibits good photocatalytic activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying and M.S. Dresselhaus, Appl. Phys. Lett., 79, 677 (2001); https://doi.org/10.1063/1.1385800
- M.M. Rahman, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, S.B. Khan and A.M. Asiri, Chem. Cent. J., 7, 60 (2013); https://doi.org/10.1186/1752-153X-7-60
- E. Pelizzetti and C. Minero, Comments Inorg. Chem., 15, 297 (1994); https://doi.org/10.1080/02603599408035846
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004
- N. Kislov, J. Lahiri, H. Verma, D Y. Goswami, E. Stefanakos and M. Batzill, Langmuir, 25, 3310 (2019); https://doi.org/10.1021/la803845f
- H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao and G. Zeng, Desalination, 286, 41 (2012); https://doi.org/10.1016/j.desal.2011.10.036
- S. Baruah, M. Jaisai, R. Imani, M.M. Nazhad and J. Dutta, Sci. Technol. Adv. Mater., 11, 055002 (2010); https://doi.org/10.1088/1468-6996/11/5/055002
- M. Nirmala, M.G. Nair, K. Rekha and A. Anukalini, African J. Basic Appl. Sci., 2, 161 (2010).
- M. Qamar and M. Muneer, Desalination, 249, 535 (2009); https://doi.org/10.1016/j.desal.2009.01.022
- H. Chen, C.E. Nanayakkara and V.H. Grassian, Chem. Rev., 112, 5919 (2012); https://doi.org/10.1021/cr3002092
- S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee and M.H. Cho, Nanoscale, 5, 9238 (2013); https://doi.org/10.1039/c3nr02678g
- H. Wang and A.L. Rogach, Chem. Mater., 26, 123 (2014); https://doi.org/10.1021/cm4018248
- C. Sun, H. Li and L. Chen, Energy Environ. Sci., 5, 8475 (2012); https://doi.org/10.1039/c2ee22310d
- Y. Yang, H. Yu, D. York, Q. Cui and M. Elstner, J. Phys. Chem. C, 111, 10861 (2007); https://doi.org/10.1021/jp074167r
- L. Li, Z. Lou and G. Shen, ACS Appl. Mater. Interfaces, 7, 23507 (2015); https://doi.org/10.1021/acsami.5b06070
- D. Wu, C. Li, D. Zhang, L. Wang, X. Zhang, Z. Shi and Q. Lin, J. Rare Earths, 37, 845 (2019); https://doi.org/10.1016/j.jre.2018.10.011
- N. Sakai, L. Zhu, A. Kurokawa, H. Takeuchi, S. Yano, T. Yanoh, N. Wada, S. Taira, Y. Hosokai, A. Usui, Y. Machida, H. Saito and Y. Ichiyanagi, J. Phys. Conf. Ser., 352, 012008 (2012); https://doi.org/10.1088/1742-6596/352/1/012008
- M.M. Abdullah, M.M. Rahman, M. Faisal, S.B. Khan, P. Singh, M.A. Rub, N. Azum, A. Khan, A.A.P. Khan and M. Hasmuddin, J. Colloid Sci. Biotechnol., 2, 322 (2013); https://doi.org/10.1166/jcsb.2013.1069
- Y. Aldegs, M. Elbarghouthi, A. Elsheikh and G. Walker, Dyes Pigm., 77, 16 (2008); https://doi.org/10.1016/j.dyepig.2007.03.001
- C. Zaharia, D. Suteu, A. Muresan, R. Muresan and A. Popescu, Environ. Eng. Manag. J., 8, 1359 (2009); https://doi.org/10.30638/eemj.2009.199
- S. Papic, N. Koprivanac, A. Bozic and A. Metes, Dyes Pigm., 62, 291 (2004); https://doi.org/10.1016/S0143-7208(03)00148-7
- F. Hashemzadeh, R. Rahimi and A. Ghaffarinejad, Int. J. Appl. Chem. Sci. Res., 1, 95 (2013).
- M.C. Cotto, T. Campo, E. Elizalde, A. Gomez, C. Morant and F.M. Marquez, Am. Chem. Sci. J., 3, 178 (2013); https://doi.org/10.9734/ACSJ/2013/2712
- S. Rajalakshmi, S. Pitchaimuthu, N. Kannan and P. Velusamy, Appl. Water Sci., 7, 115 (2017); https://doi.org/10.1007/s13201-014-0223-5
- A.A. Al-Kahtani, J. Biomater. Nanobiotechnol., 8, 66 (2017); https://doi.org/10.4236/jbnb.2017.81005
- R.S. Ganesh, S.K. Sharma, E. Durgadevi, M. Navaneethan, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa and D.Y. Kim, Superlattices Microstruct., 104, 247 (2017); https://doi.org/10.1016/j.spmi.2017.02.029
- Y.Y. Lu, Y.Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z.C. Feng and C. Li, Appl. Surf. Sci., 370, 312 (2016); https://doi.org/10.1016/j.apsusc.2016.02.170
- M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong and A.N. Grace, Powder Technol., 279, 209 (2015); https://doi.org/10.1016/j.powtec.2015.03.041
- Amita, Diksha and P.S. Rana, AIP Conf. Proc., 2115, 030109 (2019); https://doi.org/10.1063/1.5112948
- G.K. Das, B.C. Heng, S.-C. Ng, T. White, J.S.C. Loo, L. D’Silva, P. Padmanabhan, K.K. Bhakoo, S.T. Selvan and T.T.Y. Tan, Langmuir, 26, 8959 (2010); https://doi.org/10.1021/la904751q
- V. Bedekar, D.P. Dutta, M. Mohapatra, S.G. Godbole, R. Ghildiyal and A.K. Tyagi, Nanotechnology, 20, 125707 (2009); https://doi.org/10.1088/0957-4484/20/12/125707
- D. Raiser and J.P. Deville, J. Electron Spectrosc. Rel. Phenomena, 57, 91 (1991).
- T.L. Vinolia and A.S. Nesaraj, Integr. Ferroelectr., 221, 186 (2021); https://doi.org/10.1080/10584587.2021.1965844
- M. Sun, D. Li, Y. Chen, W. Chen, W. Li, Y. He and X. Fu, J. Phys. Chem. C, 113, 13825 (2009); https://doi.org/10.1021/jp903355a
- S.V. Elangovan, V. Chandramohan, N. Sivakumar and T.S. Senthil, Superlattices Microstruct., 85, 901 (2015); https://doi.org/10.1016/j.spmi.2015.07.004
- S.K. Kansal, M. Singh and D. Sud, J. Hazard. Mater., 141, 581 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.035
- E.J. Land and M. Ebert, Trans. Faraday Soc., 63, 1181 (1967); https://doi.org/10.1039/tf9676301181
- A.R. Khataee, M.N. Pons and O. Zahraa, J. Hazard. Mater., 168, 451 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.052
- N. Daneshvar, A. Aleboyeh and A.R. Khataee, Chemosphere, 59, 761 (2005); https://doi.org/10.1016/j.chemosphere.2004.11.012
- A. Barrera, F. Tzompantzi, J. Campa-Molina, J.E. Casillas, R. PérezHernández, S. Ulloa-Godinez, C. Velásquez and J. Arenas-Alatorre, RSC Adv., 8, 3108 (2018); https://doi.org/10.1039/C7RA12665D
References
Y.M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying and M.S. Dresselhaus, Appl. Phys. Lett., 79, 677 (2001); https://doi.org/10.1063/1.1385800
M.M. Rahman, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, S.B. Khan and A.M. Asiri, Chem. Cent. J., 7, 60 (2013); https://doi.org/10.1186/1752-153X-7-60
E. Pelizzetti and C. Minero, Comments Inorg. Chem., 15, 297 (1994); https://doi.org/10.1080/02603599408035846
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004
N. Kislov, J. Lahiri, H. Verma, D Y. Goswami, E. Stefanakos and M. Batzill, Langmuir, 25, 3310 (2019); https://doi.org/10.1021/la803845f
H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao and G. Zeng, Desalination, 286, 41 (2012); https://doi.org/10.1016/j.desal.2011.10.036
S. Baruah, M. Jaisai, R. Imani, M.M. Nazhad and J. Dutta, Sci. Technol. Adv. Mater., 11, 055002 (2010); https://doi.org/10.1088/1468-6996/11/5/055002
M. Nirmala, M.G. Nair, K. Rekha and A. Anukalini, African J. Basic Appl. Sci., 2, 161 (2010).
M. Qamar and M. Muneer, Desalination, 249, 535 (2009); https://doi.org/10.1016/j.desal.2009.01.022
H. Chen, C.E. Nanayakkara and V.H. Grassian, Chem. Rev., 112, 5919 (2012); https://doi.org/10.1021/cr3002092
S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee and M.H. Cho, Nanoscale, 5, 9238 (2013); https://doi.org/10.1039/c3nr02678g
H. Wang and A.L. Rogach, Chem. Mater., 26, 123 (2014); https://doi.org/10.1021/cm4018248
C. Sun, H. Li and L. Chen, Energy Environ. Sci., 5, 8475 (2012); https://doi.org/10.1039/c2ee22310d
Y. Yang, H. Yu, D. York, Q. Cui and M. Elstner, J. Phys. Chem. C, 111, 10861 (2007); https://doi.org/10.1021/jp074167r
L. Li, Z. Lou and G. Shen, ACS Appl. Mater. Interfaces, 7, 23507 (2015); https://doi.org/10.1021/acsami.5b06070
D. Wu, C. Li, D. Zhang, L. Wang, X. Zhang, Z. Shi and Q. Lin, J. Rare Earths, 37, 845 (2019); https://doi.org/10.1016/j.jre.2018.10.011
N. Sakai, L. Zhu, A. Kurokawa, H. Takeuchi, S. Yano, T. Yanoh, N. Wada, S. Taira, Y. Hosokai, A. Usui, Y. Machida, H. Saito and Y. Ichiyanagi, J. Phys. Conf. Ser., 352, 012008 (2012); https://doi.org/10.1088/1742-6596/352/1/012008
M.M. Abdullah, M.M. Rahman, M. Faisal, S.B. Khan, P. Singh, M.A. Rub, N. Azum, A. Khan, A.A.P. Khan and M. Hasmuddin, J. Colloid Sci. Biotechnol., 2, 322 (2013); https://doi.org/10.1166/jcsb.2013.1069
Y. Aldegs, M. Elbarghouthi, A. Elsheikh and G. Walker, Dyes Pigm., 77, 16 (2008); https://doi.org/10.1016/j.dyepig.2007.03.001
C. Zaharia, D. Suteu, A. Muresan, R. Muresan and A. Popescu, Environ. Eng. Manag. J., 8, 1359 (2009); https://doi.org/10.30638/eemj.2009.199
S. Papic, N. Koprivanac, A. Bozic and A. Metes, Dyes Pigm., 62, 291 (2004); https://doi.org/10.1016/S0143-7208(03)00148-7
F. Hashemzadeh, R. Rahimi and A. Ghaffarinejad, Int. J. Appl. Chem. Sci. Res., 1, 95 (2013).
M.C. Cotto, T. Campo, E. Elizalde, A. Gomez, C. Morant and F.M. Marquez, Am. Chem. Sci. J., 3, 178 (2013); https://doi.org/10.9734/ACSJ/2013/2712
S. Rajalakshmi, S. Pitchaimuthu, N. Kannan and P. Velusamy, Appl. Water Sci., 7, 115 (2017); https://doi.org/10.1007/s13201-014-0223-5
A.A. Al-Kahtani, J. Biomater. Nanobiotechnol., 8, 66 (2017); https://doi.org/10.4236/jbnb.2017.81005
R.S. Ganesh, S.K. Sharma, E. Durgadevi, M. Navaneethan, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa and D.Y. Kim, Superlattices Microstruct., 104, 247 (2017); https://doi.org/10.1016/j.spmi.2017.02.029
Y.Y. Lu, Y.Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z.C. Feng and C. Li, Appl. Surf. Sci., 370, 312 (2016); https://doi.org/10.1016/j.apsusc.2016.02.170
M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong and A.N. Grace, Powder Technol., 279, 209 (2015); https://doi.org/10.1016/j.powtec.2015.03.041
Amita, Diksha and P.S. Rana, AIP Conf. Proc., 2115, 030109 (2019); https://doi.org/10.1063/1.5112948
G.K. Das, B.C. Heng, S.-C. Ng, T. White, J.S.C. Loo, L. D’Silva, P. Padmanabhan, K.K. Bhakoo, S.T. Selvan and T.T.Y. Tan, Langmuir, 26, 8959 (2010); https://doi.org/10.1021/la904751q
V. Bedekar, D.P. Dutta, M. Mohapatra, S.G. Godbole, R. Ghildiyal and A.K. Tyagi, Nanotechnology, 20, 125707 (2009); https://doi.org/10.1088/0957-4484/20/12/125707
D. Raiser and J.P. Deville, J. Electron Spectrosc. Rel. Phenomena, 57, 91 (1991).
T.L. Vinolia and A.S. Nesaraj, Integr. Ferroelectr., 221, 186 (2021); https://doi.org/10.1080/10584587.2021.1965844
M. Sun, D. Li, Y. Chen, W. Chen, W. Li, Y. He and X. Fu, J. Phys. Chem. C, 113, 13825 (2009); https://doi.org/10.1021/jp903355a
S.V. Elangovan, V. Chandramohan, N. Sivakumar and T.S. Senthil, Superlattices Microstruct., 85, 901 (2015); https://doi.org/10.1016/j.spmi.2015.07.004
S.K. Kansal, M. Singh and D. Sud, J. Hazard. Mater., 141, 581 (2007); https://doi.org/10.1016/j.jhazmat.2006.07.035
E.J. Land and M. Ebert, Trans. Faraday Soc., 63, 1181 (1967); https://doi.org/10.1039/tf9676301181
A.R. Khataee, M.N. Pons and O. Zahraa, J. Hazard. Mater., 168, 451 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.052
N. Daneshvar, A. Aleboyeh and A.R. Khataee, Chemosphere, 59, 761 (2005); https://doi.org/10.1016/j.chemosphere.2004.11.012
A. Barrera, F. Tzompantzi, J. Campa-Molina, J.E. Casillas, R. PérezHernández, S. Ulloa-Godinez, C. Velásquez and J. Arenas-Alatorre, RSC Adv., 8, 3108 (2018); https://doi.org/10.1039/C7RA12665D