Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Extraction and Microemulsion of Lupin Protein
Corresponding Author(s) : M. Hanania
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
In present study, protein and oil were extracted from sweet and bitter lupin that were used to define the phase behaviour of a three-component system (lupin oil, Tween 80/propylene glycol and water/lupin protein). Ternary phase diagrams were constructed and the optimum area of ternary phase diagrams corresponding to the formation of microemulsions were identified using emulsion titration method. Phase inversion composition method was applied, which involved the spontaneous formation of microemulsion, characterized by visual observation for their phase separation and optical clarity (e.g. transparency and opacity). Generally, o/w microemulsions were formed at a small region of the ternary phase diagrams with a relatively large ratio of water/lupin protein. Some differences between the sweet and bitter lupin diagrams were observed in regions, including bi- and multiphase, liquid crystals, gel and coarse emulsions. The physical characteristics of the microemulsions did not change with different storage temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Zafeiriou, A.N. Polidoros, E. Baira, K.M. Kasiotis, K. Machera and P.V. Mylona, Plants, 10, 2403 (2021); https://doi.org/10.3390/plants10112403
- A. Gulisano, S. Alves, J.N. Martins and L.M. Trindade, Crop. Front. Plant Sci., 10, 1385 (2019); https://doi.org/10.3389/fpls.2019.01385
- P. Msika, A. Piccirilli and N. Piccardi, US Patent 8747815B2 (2003).
- M.K. Khan, W. Karnpanit, S.M. Nasar-Abbas, Z. Huma and V. Jayasena, Int. J. Food Sci., 50, 2004 (2015); https://doi.org/10.1111/ijfs.12796
- M. Vogelsang-O’Dwyer, J. Bez, I.L. Petersen, M.S. Joehnke, A. Detzel, M. Busch, M. Krueger, L. Ispiryan, J.A. O’Mahony, E.K. Arendt and E. Zannini, Foods, 9, 230 (2020); https://doi.org/10.3390/foods9020230
- J.R. Hama and B.W. Strobel, Environ. Sci. Eur., 32, 126 (2020); https://doi.org/10.1186/s12302-020-00405-7
- Z. Çakir, C. Uçarli, A. Tarhan, M. Pekmez and N. Turgut-Kara, Food Sci. Technol., 39, 1 (2019); https://doi.org/10.1590/fst.42117
- E. Lampart-Szczapa, Food/Nahrung, 40, 71 (1996); https://doi.org/10.1002/food.19960400205
- S.N. Kale and S.L. Deore, Syst. Rev. Pharm., 8, 39 (2016); https://doi.org/10.5530/srp.2017.1.8
- A. Mishra, R. Panola and A.C. Rana, J. Sci. Innov. Res., 3, 467 (2014); https://doi.org/10.31254/jsir.2014.3412
- J. Klier, C.J. Tucker, T.H. Kalantar and D.P. Green, Adv. Mater., 12, 1751 (2000); https://doi.org/10.1002/1521-4095(200012)12:23<1751::AIDADMA1751>3.0.CO;2-I
- C. Scomoroscenco, M. Teodorescu, A. Raducan, M. Stan, S.N. Voicu, B. Trica, C.M. Ninciuleanu, C.L. Nistor, C.I. Mihaescu, C. Petcu and L.O. Cinteza, Pharmaceutics, 13, 505 (2021); https://doi.org/10.3390/pharmaceutics13040505
- R. Lásztity, M.M. Khalil, R. Haraszi, O. Baticz and S. Tömösközi, Nahrung, 45, 396 (2001); https://doi.org/10.1002/1521-3803(20011001)45:6<396::AIDFOOD396>3.0.CO;2-C
- A.H. Lara-Rivera, P. García-Alamilla, L.M. Lagunes-Gálvez, R. Rodríguez Macias, P.M. García López and J.F. Zamora Natera, J. Food Qual., 2017, 1 (2017); https://doi.org/10.1155/2017/8675814
- Doxastakis and V. Kiosseoglou, Novel Macromolecules in Food Systems, Elsevier, pp. 7-38 (2000).
- F.E. Carvajal-Larenas, A.R. Linnemann, M.J.R. Nout, M. Koziol and M.A.J.S. van Boekel, Crit. Rev. Food Sci. Nutr., 56, 1454 (2016); https://doi.org/10.1080/10408398.2013.772089
- D. Klupsaite and G. Juodeikiene, Food Chem. Technol., 66, 5 (2015).
- S. Alamanou and G. Doxastakis, Dev. Food Sci., 37, 2129 (1995); https://doi.org/10.1016/S0167-4501(06)80278-5
- B. Lo, S. Kasapis and A. Farahnaky, Food Hydrocoll., 115, 106318 (2020); https://doi.org/10.1016/j.foodhyd.2020.106318
- H.M. Sbihi, I.A. Nehdi, C.P. Tan and S.I. Al-Resayes, Ind. Crops Prod., 49, 573 (2013); https://doi.org/10.1016/j.indcrop.2013.05.020
- I.I. Khalid and S.B. Elhardallou, Orient. J. Chem., 35, 1148 (2019); https://doi.org/10.13005/ojc/350332
- A. Forgiarini, J. Esquena, C. González and C. Solans, Langmuir, 17, 2076 (2001); https://doi.org/10.1021/la001362n
- D. Morales, J.M. Gutiérrez, M.J. García-Celma and Y.C. Solans, Langmuir, 19, 7196 (2003); https://doi.org/10.1021/la0300737
- T. El-Adawy, E. Rahma, A. El-Bedawey and A. Gafar, Food Chem., 74, 455 (2001); https://doi.org/10.1016/S0308-8146(01)00163-7
- K.D. Staples, A.A. Hamama, R. Knight-Mason and H.L. Bhardwaj, J. Agric. Sci., 9, 13 (2017); https://doi.org/10.5539/jas.v9n6p13
References
I. Zafeiriou, A.N. Polidoros, E. Baira, K.M. Kasiotis, K. Machera and P.V. Mylona, Plants, 10, 2403 (2021); https://doi.org/10.3390/plants10112403
A. Gulisano, S. Alves, J.N. Martins and L.M. Trindade, Crop. Front. Plant Sci., 10, 1385 (2019); https://doi.org/10.3389/fpls.2019.01385
P. Msika, A. Piccirilli and N. Piccardi, US Patent 8747815B2 (2003).
M.K. Khan, W. Karnpanit, S.M. Nasar-Abbas, Z. Huma and V. Jayasena, Int. J. Food Sci., 50, 2004 (2015); https://doi.org/10.1111/ijfs.12796
M. Vogelsang-O’Dwyer, J. Bez, I.L. Petersen, M.S. Joehnke, A. Detzel, M. Busch, M. Krueger, L. Ispiryan, J.A. O’Mahony, E.K. Arendt and E. Zannini, Foods, 9, 230 (2020); https://doi.org/10.3390/foods9020230
J.R. Hama and B.W. Strobel, Environ. Sci. Eur., 32, 126 (2020); https://doi.org/10.1186/s12302-020-00405-7
Z. Çakir, C. Uçarli, A. Tarhan, M. Pekmez and N. Turgut-Kara, Food Sci. Technol., 39, 1 (2019); https://doi.org/10.1590/fst.42117
E. Lampart-Szczapa, Food/Nahrung, 40, 71 (1996); https://doi.org/10.1002/food.19960400205
S.N. Kale and S.L. Deore, Syst. Rev. Pharm., 8, 39 (2016); https://doi.org/10.5530/srp.2017.1.8
A. Mishra, R. Panola and A.C. Rana, J. Sci. Innov. Res., 3, 467 (2014); https://doi.org/10.31254/jsir.2014.3412
J. Klier, C.J. Tucker, T.H. Kalantar and D.P. Green, Adv. Mater., 12, 1751 (2000); https://doi.org/10.1002/1521-4095(200012)12:23<1751::AIDADMA1751>3.0.CO;2-I
C. Scomoroscenco, M. Teodorescu, A. Raducan, M. Stan, S.N. Voicu, B. Trica, C.M. Ninciuleanu, C.L. Nistor, C.I. Mihaescu, C. Petcu and L.O. Cinteza, Pharmaceutics, 13, 505 (2021); https://doi.org/10.3390/pharmaceutics13040505
R. Lásztity, M.M. Khalil, R. Haraszi, O. Baticz and S. Tömösközi, Nahrung, 45, 396 (2001); https://doi.org/10.1002/1521-3803(20011001)45:6<396::AIDFOOD396>3.0.CO;2-C
A.H. Lara-Rivera, P. García-Alamilla, L.M. Lagunes-Gálvez, R. Rodríguez Macias, P.M. García López and J.F. Zamora Natera, J. Food Qual., 2017, 1 (2017); https://doi.org/10.1155/2017/8675814
Doxastakis and V. Kiosseoglou, Novel Macromolecules in Food Systems, Elsevier, pp. 7-38 (2000).
F.E. Carvajal-Larenas, A.R. Linnemann, M.J.R. Nout, M. Koziol and M.A.J.S. van Boekel, Crit. Rev. Food Sci. Nutr., 56, 1454 (2016); https://doi.org/10.1080/10408398.2013.772089
D. Klupsaite and G. Juodeikiene, Food Chem. Technol., 66, 5 (2015).
S. Alamanou and G. Doxastakis, Dev. Food Sci., 37, 2129 (1995); https://doi.org/10.1016/S0167-4501(06)80278-5
B. Lo, S. Kasapis and A. Farahnaky, Food Hydrocoll., 115, 106318 (2020); https://doi.org/10.1016/j.foodhyd.2020.106318
H.M. Sbihi, I.A. Nehdi, C.P. Tan and S.I. Al-Resayes, Ind. Crops Prod., 49, 573 (2013); https://doi.org/10.1016/j.indcrop.2013.05.020
I.I. Khalid and S.B. Elhardallou, Orient. J. Chem., 35, 1148 (2019); https://doi.org/10.13005/ojc/350332
A. Forgiarini, J. Esquena, C. González and C. Solans, Langmuir, 17, 2076 (2001); https://doi.org/10.1021/la001362n
D. Morales, J.M. Gutiérrez, M.J. García-Celma and Y.C. Solans, Langmuir, 19, 7196 (2003); https://doi.org/10.1021/la0300737
T. El-Adawy, E. Rahma, A. El-Bedawey and A. Gafar, Food Chem., 74, 455 (2001); https://doi.org/10.1016/S0308-8146(01)00163-7
K.D. Staples, A.A. Hamama, R. Knight-Mason and H.L. Bhardwaj, J. Agric. Sci., 9, 13 (2017); https://doi.org/10.5539/jas.v9n6p13