Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Palladium(II) Complexes with S-Benzyl Dithiocarbazate: Synthesis, Characterization in vitro Antimicrobial and Anticancer Activities
Corresponding Author(s) : Nighat Fahmi
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
Square planar complexes of palladium(II) were prepared by the reaction of PdCl2 with four different thio Schiff bases, namely 2-acetyl-pyridine S-benzyl dithiocarbazate (L1H), 2-acetylthiophene-S-benzyl dithiocarbazate (L2H), 2-acetylfuran-S-benzyl dithiocarbazate (L3H) and 2-acetylnaphthalene-S-benzyl dithiocarbazate (L4H) in a 1:2 molar ratio. Elemental analysis, molecular weight determinations, conductance measurements and spectral data, including electronic, IR, 1H and 13C NMR and X-ray powder diffraction studies, confirmed the formation of palladium(II) complexes. The electrochemical behaviour of one of the palladium(II) complex has also been determined by cyclic voltammetry. The antimicrobial activities of the Schiff base ligands and their corresponding palladium(II) complexes have been tested in vitro against various pathogenic bacterial and fungal strains. The cytotoxicity of [Pd(L1)2] complex shows the promising results when analyzed using MTT cell proliferation assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.T. Vhanale, N.J. Deshmukh and A.T. Shinde, Heliyon, 5, e02774 (2019); https://doi.org/10.1016/j.heliyon.2019.e02774
- S. Arroudj, M. Bouchouit, K. Bouchouit, A. Bouraiou, L. Messaadia, B. Kulyk, V. Figa, S. Bouacida, Z. Sofiani and S. Taboukhat, Opt. Mater., 56, 116 (2016); https://doi.org/10.1016/j.optmat.2015.12.046
- D. Nartop, E.H. Ozkan, M. Gundem, S. Çeker, G. Agar, H. Ogutcu and N. Sarý, J. Mol. Struct., 1195, 877 (2019); https://doi.org/10.1016/j.molstruc.2019.06.042
- Z.D. Petrovic, J. Dorovic, D. Simijonovic, V.P. Petrovic and Z. Markovic, RSC Adv., 5, 24094 (2015); https://doi.org/10.1039/C5RA02134K
- A.M. Abu-Dief and I.M.A. Mohamed, Beni Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004
- S.N. Mbugua, N.R.S. Sibuyi, L.W. Njenga, R.A. Odhiambo, S.O. Wandiga, M. Meyer, R.A. Lalancette and M.O. Onani, ACS Omega, 5, 14942 (2020); https://doi.org/10.1021/acsomega.0c00360
- S. Layek, B. Anuradha, B. Agrahari and D. Pathak, J. Organomet. Chem., 846, 105 (2017); https://doi.org/10.1016/j.jorganchem.2017.05.049
- P. Tyagi, M. Tyagi, S. Agrawal, S. Chandra, H. Ojha and M. Pathak, Spectrochim. Acta A Mol. Biomol. Spectrosc., 171, 246 (2017); https://doi.org/10.1016/j.saa.2016.08.008
- N. Fahmi, S. Shrivastava, R. Meena, S.C. Joshi and R.V. Singh, New J. Chem., 37, 1445 (2013); https://doi.org/10.1039/c3nj40907d
- M. Manjunath, A.D. Kulkarni, G.B. Bagihalli, S. Malladi and S.A. Patil, J. Mol. Struct., 1127, 314 (2017); https://doi.org/10.1016/j.molstruc.2016.07.123
- M. Fuentealba, J.-R. Hamon, D. Carrillo and C. Manzur, New J. Chem., 31, 1815 (2007); https://doi.org/10.1039/b707934f
- M.A.-A.A.A. Islam, M.T.H. Tarafder, M.C. Sheikh, M.A. Alam and E. Zangrando, Transition Met. Chem., 36, 531 (2011); https://doi.org/10.1007/s11243-011-9499-6
- M.H.E. Chan, K.A. Crouse, M.I.M. Tahir, R. Rosli, N. Umar-Tsafe and A.R. Cowley, Polyhedron, 27, 1141 (2008); https://doi.org/10.1016/j.poly.2007.11.035
- S. Sharma, R. Meena, Y. Satyawana and N. Fahmi, Russ. J. Gen. Chem., 86, 2807 (2016); https://doi.org/10.1134/S1070363216120446
- M.T.H. Tarafder, A. Asmadi, S.M.S. Talib, A.M. Ali and K.A. Crouse, Transition Met. Chem., 26, 170 (2001); https://doi.org/10.1023/A:1007119504397
- F.N.F. How, K.A. Crouse, M.I.M. Tahir, M.T.H. Tarafder and A.R. Cowley, Polyhedron, 27, 3325 (2008); https://doi.org/10.1016/j.poly.2008.07.022
- H. Brahim, J. Lumin., 210, 96 (2019); https://doi.org/10.1016/j.jlumin.2019.02.030
- Y. Kim, J. Lee, Y. Son, S. Unchoi, M. Alam and S. Park, J. Inorg. Biochem., 205, 111015 (2020); https://doi.org/10.1016/j.jinorgbio.2020.111015
- M.A. Arafath, F. Adam, M.R. Razali, L.E.A. Hassan, M.B.K. Ahamed and A.M.S. Majid, J. Mol. Struct., 1130, 791 (2017); https://doi.org/10.1016/j.molstruc.2016.10.099
- A. Bouchoucha, S. Zaater, S. Bouacida, H. Merazig and S. Djabbar, J. Mol. Struct., 1161, 345 (2018); https://doi.org/10.1016/j.molstruc.2018.02.057
- E. Pahontu, S. Shova, G. Lupascu, D.C. Ilies, S.F. Barbuceanu, L.I. Socea, M. Badea, V. Pãunescu, D. Istrati, A. Gulea, D. Draganescu and C.E. Dinu Pirvu, Appl. Organomet. Chem., 33, 5185 (2019); https://doi.org/10.1002/aoc.5185
- A.K.S. Pereira, C.M. Manzano, D.H. Nakahata, J.C.T. Clavijo, D.H. Pereira, W.R. Lustri and P.P. Corbi, New J. Chem., 44, 11546 (2020); https://doi.org/10.1039/D0NJ02009E
- A.I. Vogel, A Textbook of Quantitative Chemical Analysis, 6th Edition. Pearson Education Ltd.: UK, pp. 387-498 (2006).
- N. Fahmi, R. Meena, P. Mitharwal, S. Shrivastava and R.V. Singh, Int. J. Pharma Sci., 5, 2821 (2014).
- A. Kumari, R. Meena, R.V. Singh and N. Fahmi, Indian J. Chem., 60A, 341 (2021).
- K. Sharma, M. Swami, R. Singh, N. Fahmi and R.V. Singh, Phosphorus Sulfur Silicon Rel. Elem., 184, 1964 (2009); https://doi.org/10.1080/10426500802417133
References
B.T. Vhanale, N.J. Deshmukh and A.T. Shinde, Heliyon, 5, e02774 (2019); https://doi.org/10.1016/j.heliyon.2019.e02774
S. Arroudj, M. Bouchouit, K. Bouchouit, A. Bouraiou, L. Messaadia, B. Kulyk, V. Figa, S. Bouacida, Z. Sofiani and S. Taboukhat, Opt. Mater., 56, 116 (2016); https://doi.org/10.1016/j.optmat.2015.12.046
D. Nartop, E.H. Ozkan, M. Gundem, S. Çeker, G. Agar, H. Ogutcu and N. Sarý, J. Mol. Struct., 1195, 877 (2019); https://doi.org/10.1016/j.molstruc.2019.06.042
Z.D. Petrovic, J. Dorovic, D. Simijonovic, V.P. Petrovic and Z. Markovic, RSC Adv., 5, 24094 (2015); https://doi.org/10.1039/C5RA02134K
A.M. Abu-Dief and I.M.A. Mohamed, Beni Suef Univ. J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004
S.N. Mbugua, N.R.S. Sibuyi, L.W. Njenga, R.A. Odhiambo, S.O. Wandiga, M. Meyer, R.A. Lalancette and M.O. Onani, ACS Omega, 5, 14942 (2020); https://doi.org/10.1021/acsomega.0c00360
S. Layek, B. Anuradha, B. Agrahari and D. Pathak, J. Organomet. Chem., 846, 105 (2017); https://doi.org/10.1016/j.jorganchem.2017.05.049
P. Tyagi, M. Tyagi, S. Agrawal, S. Chandra, H. Ojha and M. Pathak, Spectrochim. Acta A Mol. Biomol. Spectrosc., 171, 246 (2017); https://doi.org/10.1016/j.saa.2016.08.008
N. Fahmi, S. Shrivastava, R. Meena, S.C. Joshi and R.V. Singh, New J. Chem., 37, 1445 (2013); https://doi.org/10.1039/c3nj40907d
M. Manjunath, A.D. Kulkarni, G.B. Bagihalli, S. Malladi and S.A. Patil, J. Mol. Struct., 1127, 314 (2017); https://doi.org/10.1016/j.molstruc.2016.07.123
M. Fuentealba, J.-R. Hamon, D. Carrillo and C. Manzur, New J. Chem., 31, 1815 (2007); https://doi.org/10.1039/b707934f
M.A.-A.A.A. Islam, M.T.H. Tarafder, M.C. Sheikh, M.A. Alam and E. Zangrando, Transition Met. Chem., 36, 531 (2011); https://doi.org/10.1007/s11243-011-9499-6
M.H.E. Chan, K.A. Crouse, M.I.M. Tahir, R. Rosli, N. Umar-Tsafe and A.R. Cowley, Polyhedron, 27, 1141 (2008); https://doi.org/10.1016/j.poly.2007.11.035
S. Sharma, R. Meena, Y. Satyawana and N. Fahmi, Russ. J. Gen. Chem., 86, 2807 (2016); https://doi.org/10.1134/S1070363216120446
M.T.H. Tarafder, A. Asmadi, S.M.S. Talib, A.M. Ali and K.A. Crouse, Transition Met. Chem., 26, 170 (2001); https://doi.org/10.1023/A:1007119504397
F.N.F. How, K.A. Crouse, M.I.M. Tahir, M.T.H. Tarafder and A.R. Cowley, Polyhedron, 27, 3325 (2008); https://doi.org/10.1016/j.poly.2008.07.022
H. Brahim, J. Lumin., 210, 96 (2019); https://doi.org/10.1016/j.jlumin.2019.02.030
Y. Kim, J. Lee, Y. Son, S. Unchoi, M. Alam and S. Park, J. Inorg. Biochem., 205, 111015 (2020); https://doi.org/10.1016/j.jinorgbio.2020.111015
M.A. Arafath, F. Adam, M.R. Razali, L.E.A. Hassan, M.B.K. Ahamed and A.M.S. Majid, J. Mol. Struct., 1130, 791 (2017); https://doi.org/10.1016/j.molstruc.2016.10.099
A. Bouchoucha, S. Zaater, S. Bouacida, H. Merazig and S. Djabbar, J. Mol. Struct., 1161, 345 (2018); https://doi.org/10.1016/j.molstruc.2018.02.057
E. Pahontu, S. Shova, G. Lupascu, D.C. Ilies, S.F. Barbuceanu, L.I. Socea, M. Badea, V. Pãunescu, D. Istrati, A. Gulea, D. Draganescu and C.E. Dinu Pirvu, Appl. Organomet. Chem., 33, 5185 (2019); https://doi.org/10.1002/aoc.5185
A.K.S. Pereira, C.M. Manzano, D.H. Nakahata, J.C.T. Clavijo, D.H. Pereira, W.R. Lustri and P.P. Corbi, New J. Chem., 44, 11546 (2020); https://doi.org/10.1039/D0NJ02009E
A.I. Vogel, A Textbook of Quantitative Chemical Analysis, 6th Edition. Pearson Education Ltd.: UK, pp. 387-498 (2006).
N. Fahmi, R. Meena, P. Mitharwal, S. Shrivastava and R.V. Singh, Int. J. Pharma Sci., 5, 2821 (2014).
A. Kumari, R. Meena, R.V. Singh and N. Fahmi, Indian J. Chem., 60A, 341 (2021).
K. Sharma, M. Swami, R. Singh, N. Fahmi and R.V. Singh, Phosphorus Sulfur Silicon Rel. Elem., 184, 1964 (2009); https://doi.org/10.1080/10426500802417133