Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photoluminescence and Induction Heating Studies of Fe3O4@CaWO4:5Dy3+ Magnetic-Luminescent Nanocomposite for Hyperthermia Application
Corresponding Author(s) : N.S. Khundrakpam
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
A 5 at.% Dy3+ ions doped CaWO4 nanoparticles (CaWO4:5Dy) were synthesized by hydrothermal method using polyethylene glycol (PEG) as solvent medium and capping agent. The phase purity and crystalline properties of the prepared nanoparticles were obtained from the XRD analysis. TEM images revealed that the CaWO4:Dy3+ have particles of size approximately in the range 30-50 nm. The prepared magnetic luminescence nanocomposite exhibits a high saturation magnetization. The prepared nanocomposite can achieve hyperthermia temperature (42 ºC) in a short period by applying the alternating magnetic field, externally. The nanocomposite also shows photoluminescence properties. Nanomaterials described in this work can be used for optical imaging as well as hyperthermia applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Gayatri Sharma, N. Shanta Singh, Y. Rangeela Devi, N. Rajmuhon Singh and S. Dorendrajit Singh, J. Alloys Compd., 556, 94 (2013); https://doi.org/10.1016/j.jallcom.2012.12.087
- H. He, Q. Liu, D. Yang, Q. Pan, J. Qiu and G. Dong, Sci. Rep., 6, 35348 (2016); https://doi.org/10.1038/srep35348
- H.C. Swart and R.E. Kroon, Optical Materials: X, 2, 100025 (2019); https://doi.org/10.1016/j.omx.2019.100025
- G.S. Ningombam, N.S. Khundrakpam, D.S. Thiyam, R.S. Ningthoujam and N.R. Singh, New J. Chem., 44, 4217 (2020); https://doi.org/10.1039/C9NJ05677G
- G.S. Ningombam and R.S. Nongmaithem, Int. Nano Lett., 7, 133 (2017); https://doi.org/10.1007/s40089-017-0206-2
- K. Gayatri Sharma and N. Rajmuhon Singh, New J. Chem., 37, 2784 (2013); https://doi.org/10.1039/c3nj00155e
- S.A. Corr, Y.P. Rakovich and Y.K. Gun’ko, Nanoscale Res. Lett., 3, 87 (2008); https://doi.org/10.1007/s11671-008-9122-8
- K. Wu, D. Su, J. Liu, R. Saha and J.-P. Wang, Nanotechnology, 30, 502003 (2019); https://doi.org/10.1088/1361-6528/ab4241
- L.P. Singh, N.P. Singh and S.K. Srivastava, Dalton Trans., 44, 6457 (2015); https://doi.org/10.1039/C4DT03000A
- S. Ganguly and S. Margel, Polymers, 13, 4259 (2021); https://doi.org/10.3390/polym13234259
- Q. Li, Y. Shen and T. Li, J. Chem., 2013, 952954 (2013); https://doi.org/10.1155/2013/952954
- F. Lei and B. Yan, J. Solid State Chem., 181, 855 (2008); https://doi.org/10.1016/j.jssc.2008.01.033
- Z.Y. Hou, C.X. Li, J. Yang, H.Z. Lian, P.P. Yang, R.T. Chai, Z.Y. Cheng and J. Lin, J. Mater. Chem., 19, 2737 (2009); https://doi.org/10.1039/b818810f
- L. Wu, Y. Zhang, M.Y. Gui, P.Z. Lu, L.X. Zhao, S. Tian, Y.F. Kong and J.J. Xu, J. Mater. Chem., 22, 6463 (2012); https://doi.org/10.1039/c2jm15506k
- Y. Zhang, W. Gong, J. Yu, H. Pang, Q. Song and G. Ning, RSC Adv., 5, 62527 (2015); https://doi.org/10.1039/C5RA12502B
- C.H. Huang and T.M. Chen, J. Phys. Chem. C, 115, 2349 (2011); https://doi.org/10.1021/jp107856d
- L.P. Singh, S.K. Srivastava, R. Mishra and R.S. Ningthoujam, J. Phys. Chem. C, 118, 18087 (2014); https://doi.org/10.1021/jp502825p
References
K. Gayatri Sharma, N. Shanta Singh, Y. Rangeela Devi, N. Rajmuhon Singh and S. Dorendrajit Singh, J. Alloys Compd., 556, 94 (2013); https://doi.org/10.1016/j.jallcom.2012.12.087
H. He, Q. Liu, D. Yang, Q. Pan, J. Qiu and G. Dong, Sci. Rep., 6, 35348 (2016); https://doi.org/10.1038/srep35348
H.C. Swart and R.E. Kroon, Optical Materials: X, 2, 100025 (2019); https://doi.org/10.1016/j.omx.2019.100025
G.S. Ningombam, N.S. Khundrakpam, D.S. Thiyam, R.S. Ningthoujam and N.R. Singh, New J. Chem., 44, 4217 (2020); https://doi.org/10.1039/C9NJ05677G
G.S. Ningombam and R.S. Nongmaithem, Int. Nano Lett., 7, 133 (2017); https://doi.org/10.1007/s40089-017-0206-2
K. Gayatri Sharma and N. Rajmuhon Singh, New J. Chem., 37, 2784 (2013); https://doi.org/10.1039/c3nj00155e
S.A. Corr, Y.P. Rakovich and Y.K. Gun’ko, Nanoscale Res. Lett., 3, 87 (2008); https://doi.org/10.1007/s11671-008-9122-8
K. Wu, D. Su, J. Liu, R. Saha and J.-P. Wang, Nanotechnology, 30, 502003 (2019); https://doi.org/10.1088/1361-6528/ab4241
L.P. Singh, N.P. Singh and S.K. Srivastava, Dalton Trans., 44, 6457 (2015); https://doi.org/10.1039/C4DT03000A
S. Ganguly and S. Margel, Polymers, 13, 4259 (2021); https://doi.org/10.3390/polym13234259
Q. Li, Y. Shen and T. Li, J. Chem., 2013, 952954 (2013); https://doi.org/10.1155/2013/952954
F. Lei and B. Yan, J. Solid State Chem., 181, 855 (2008); https://doi.org/10.1016/j.jssc.2008.01.033
Z.Y. Hou, C.X. Li, J. Yang, H.Z. Lian, P.P. Yang, R.T. Chai, Z.Y. Cheng and J. Lin, J. Mater. Chem., 19, 2737 (2009); https://doi.org/10.1039/b818810f
L. Wu, Y. Zhang, M.Y. Gui, P.Z. Lu, L.X. Zhao, S. Tian, Y.F. Kong and J.J. Xu, J. Mater. Chem., 22, 6463 (2012); https://doi.org/10.1039/c2jm15506k
Y. Zhang, W. Gong, J. Yu, H. Pang, Q. Song and G. Ning, RSC Adv., 5, 62527 (2015); https://doi.org/10.1039/C5RA12502B
C.H. Huang and T.M. Chen, J. Phys. Chem. C, 115, 2349 (2011); https://doi.org/10.1021/jp107856d
L.P. Singh, S.K. Srivastava, R. Mishra and R.S. Ningthoujam, J. Phys. Chem. C, 118, 18087 (2014); https://doi.org/10.1021/jp502825p