Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cellulose from Renewable Materials: Isolation, Characterization and Antimicrobial Studies
Corresponding Author(s) : V. Jaisankar
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
The present study reported the isolation of cellulose from various plant biomass sources such as jackfruit peel, pineapple leaf, corn cob and hemp. The selected plant materials were treated with sequence of chemical and mechanical methods to remove non-cellulosic components such as lignin, pectin, holo-cellulose and hemi-cellulose. The lignin present was safely removed by treatment with peroxide and acetic acid and then isolated cellulose materials were characterized by various physico-chemical techniques. The peaks observed in the FTIR spectral analysis shows the presence of α-cellulose and absence of other biomass fractions. The morphology and average crystallinity of cellulose were examined by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The inhibitory effect of isolated cellulose against certain bacteria and fungi indicated good antibacterial and antifungal activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.M. Altaner, L.H. Thomas, A.N. Fernandes and M.C. Jarvis, Biomacromolecules, 15, 791 (2014); https://doi.org/10.1021/bm401616n
- S.H. Cho, P. Purushotham, C. Fang, C. Maranas, S.M. Díaz-Moreno, V. Bulone, J. Zimmer, M. Kumar and B.T. Nixon, Plant Physiol., 175, 146 (2017); https://doi.org/10.1104/pp.17.00619
- V.V. Revin, E.V. Liyas’kina, N.B. Sapunova and A. O. Bogatyreva, Microbiology, 89, 86 (2020); https://doi.org/10.1134/S0026261720010130
- A. Kumar, T. Jyske and M. Petric, Adv. Sustain. Syst., 5, 2000251 (2021); https://doi.org/10.1002/adsu.202000251
- K. Buzala, P. Przybysz, J. Rosicka-Kaczmarek and H. Kalinowska, Cellulose, 22, 2737 (2015); https://doi.org/10.1007/s10570-015-0644-9
- G.A. Morris and S.E. Harding, Eds.: G.C.K. Roberts, Hydrodynamic Modeling of Carbohydrate Polymers. In: Encyclopedia of Biophysics. Springer, Berlin, Heidelberg (2013).
- J.T. McNamara, J.L.W. Morgan and J. Zimmer, Annu. Rev. Biochem., 84, 895 (2015); https://doi.org/10.1146/annurev-biochem-060614-033930
- A. Salama, Int. J. Biol. Macromol., 127, 606 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.130
- R.K. Singh and A.K. Singh, Waste Biomass Valoriz., 4, 129 (2013); https://doi.org/10.1007/s12649-012-9123-9
- M. Sasikala and M.J. Umapathy, New J. Chem., 42, 19979 (2018); https://doi.org/10.1039/C8NJ02973C
- A. Shalini, P. Paulraj, K. Pandian, G. Anbalagan and V. Jaisankar, Surf. Interfaces, 17, 100386 (2019); https://doi.org/10.1016/j.surfin.2019.100386
- C. Trilokesh and K.B. Uppuluri, Sci. Rep., 9, 16709 (2019); https://doi.org/10.1038/s41598-019-53412-x
- S. Mueller, C. Weder and E.J. Foster, RSC Adv., 4, 907 (2019); https://doi.org/10.1039/C3RA46390G
- L. Ravindran, S. M.S and S. Thomas, Int. J. Biol. Macromol., 131, 858 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.134
- A.A. Benhamou, Z. Kassab, A. Boussetta, M.H. Salim, E.-H. Ablouh, M. Nadifiyine, A. El Kacem Qaiss, A. Moubarik and M. El Achaby, Int. J. Biol. Macromol., 203, 302 (2022); https://doi.org/10.1016/j.ijbiomac.2022.01.163
- L.Y. Ng, T.J. Wong, C.Y. Ng and C.K.M. Amelia, Arab. J. Chem., 14, 103339 (2021); https://doi.org/10.1016/j.arabjc.2021.103339
- N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka and M. Holub, Materials, 7, 8131 (2014); https://doi.org/10.3390/ma7128131
- B.C. Okeke and S.K.C. Obi, Bioresour. Technol., 47, 283 (1994); https://doi.org/10.1016/0960-8524(94)90192-9
- N. Shanugam, R.D. Nagarkar and K. Manisha, Indian J. Nat. Prod. Resour., 6, 42 (2015).
- N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka and M. Holub, Materials, 7, 8131 (2014); https://doi.org/10.3390/ma7128131
- R.M. Dos Santos, W.P.F. Neto, H.A. Silvério, D.F. Martins, N. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
- J. Suesat and P. Suwanruji, Adv. Mater. Res., 332-334, 1781 (2011); https://doi.org/10.4028/www.scientific.net/AMR.332-334.1781
- I.M. Fareez, N.A. Ibrahim, W.M.H. Wan Yaacob, N.A. Mamat Razali, A.H. Jasni and F. Abdul Aziz, Cellulose, 25, 4407 (2018); https://doi.org/10.1007/s10570-018-1878-0
- F. Luzi, E. Fortunati, D. Puglia, M. Lavorgna, C. Santulli, J.M. Kenny and L. Torre, Ind. Crops Prod., 56, 175 (2014); https://doi.org/10.1016/j.indcrop.2014.03.006
- S.A. Ahmed, A.R. Kazim and H.M. Hassan, World J. Exp. Biosci., 20, 120 (2017).
- M.C.I. Mohd Amin, N. Ahmad, N. Halib and I. Ahmad, Carbohydr. Polym., 88, 465 (2012); https://doi.org/10.1016/j.carbpol.2011.12.022
- E. Arrebola, V.J. Carrión, J.A. Gutiérrez-Barranquero, A. Pérez-García, P. Rodríguez-Palenzuela, F.M. Cazorla and A. Vicente, FEMS Microb. Ecol., 91, 5071 (2015); https://doi.org/10.1093/femsec/fiv071
- R. Auta, G. Adamus, M. Kwiecien, I. Radecka and P. Hooley, African J. Biotechnol., 16, 470 (2017).
- H.M.C. Azeredo, H. Barud, R.S. Farinas, V.M. Vasconcellos and A.M. Claro, Front. Sustain. Food Syst., 3, 7 (2019); https://doi.org/10.3389/fsufs.2019.00007
- C. Babac, T. Kutsal and E. Piskin, Int. J. Natural Eng. Sci., 3, 19 (2009).
- S. Bae and M. Shoda, Biotechnol. Prog., 20, 1366 (2004); https://doi.org/10.1021/bp0498490
- H.S. Barud, T. Regiani, R.F. Marques, W.R. Lustri, Y. Messaddeq and S.J. Ribeiro, J. Nanomater., 2011, 721631 (2011); https://doi.org/10.1155/2011/721631
- A. Bauer, W. Kirby, J. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- W. Czaja, A. Krystynowicz, M. Kawecki, K. Wysota, J. Glik, S. Sakiel, P. Wróblewski, M. Nowak and S. Bielecki, in Eds.: R.M. Brown and I.M. Saxena, Biomedical Applications of Microbial Cellulose in Burn Wound Recovery, In: Cellulose: Molecular and Structural Biology. Springer (2007); https://doi.org/10.1007/978-1-4020-5380-1_17
- Y.J. Bomble, C.Y. Lin, A. Amore, E.K. Holwerda, P.N. Ciesielski, B.S. Donohoe, H. Wei, P.R. Chawla, I.B. Bajaj, S.A. Survase and R.S. Singhal, Food Technol. Biotechnol., 47, 107 (2009).
- Y.J. Bomble, C.Y. Lin, A. Amore, H. Wei, E.K. Holwerda, P.N. Ciesielski, B.S. Donohoe, S.R. Decker, L.R. Lynd and M.E. Himmel, Curr. Opin. Chem. Biol., 41, 61 (2017); https://doi.org/10.1016/j.cbpa.2017.10.013
- Y.J. Choi, Y. Ahn, M.S. Kang, H.K. Jun, I.S. Kim and S.H. Moon, J. Chem. Technol. Biotechnol., 79, 79 (2004); https://doi.org/10.1002/jctb.942
- A.F.S. Costa, F.C.G. Almeida, G.M. Vinhas and L.A. Surubbo, Front. Microbiol., 8, 2027 (2017); https://doi.org/10.3389/fmicb.2017.02027
- D. Pérez-Mendoza, A. Felipe, M.D. Ferreiro, J. Sanjuán and M.T. Gallegos, Front. Microbiol., 10, 746 (2019); https://doi.org/10.3389/fmicb.2019.00746
- G.A. Farias, A. Olmedilla and M.T. Gallegos, Microb. Biotechnol., 12, 688 (2019); https://doi.org/10.1111/1751-7915.13385
- J.F. Godinho, F.V. Berti, D. Müller, C.R. Rambo and L.M. Porto, Cellulose, 23, 545 (2016); https://doi.org/10.1007/s10570-015-0844-3
- M. Iguchi, S. Yamanaka and A. Budhiono, J. Mater. Sci., 35, 261 (2000); https://doi.org/10.1023/A:1004775229149
- R. Kumar, G. Mago, V. Balan and C.E. Wyman, Bioresour. Technol., 100, 3948 (2009); https://doi.org/10.1016/j.biortech.2009.01.075
References
C.M. Altaner, L.H. Thomas, A.N. Fernandes and M.C. Jarvis, Biomacromolecules, 15, 791 (2014); https://doi.org/10.1021/bm401616n
S.H. Cho, P. Purushotham, C. Fang, C. Maranas, S.M. Díaz-Moreno, V. Bulone, J. Zimmer, M. Kumar and B.T. Nixon, Plant Physiol., 175, 146 (2017); https://doi.org/10.1104/pp.17.00619
V.V. Revin, E.V. Liyas’kina, N.B. Sapunova and A. O. Bogatyreva, Microbiology, 89, 86 (2020); https://doi.org/10.1134/S0026261720010130
A. Kumar, T. Jyske and M. Petric, Adv. Sustain. Syst., 5, 2000251 (2021); https://doi.org/10.1002/adsu.202000251
K. Buzala, P. Przybysz, J. Rosicka-Kaczmarek and H. Kalinowska, Cellulose, 22, 2737 (2015); https://doi.org/10.1007/s10570-015-0644-9
G.A. Morris and S.E. Harding, Eds.: G.C.K. Roberts, Hydrodynamic Modeling of Carbohydrate Polymers. In: Encyclopedia of Biophysics. Springer, Berlin, Heidelberg (2013).
J.T. McNamara, J.L.W. Morgan and J. Zimmer, Annu. Rev. Biochem., 84, 895 (2015); https://doi.org/10.1146/annurev-biochem-060614-033930
A. Salama, Int. J. Biol. Macromol., 127, 606 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.130
R.K. Singh and A.K. Singh, Waste Biomass Valoriz., 4, 129 (2013); https://doi.org/10.1007/s12649-012-9123-9
M. Sasikala and M.J. Umapathy, New J. Chem., 42, 19979 (2018); https://doi.org/10.1039/C8NJ02973C
A. Shalini, P. Paulraj, K. Pandian, G. Anbalagan and V. Jaisankar, Surf. Interfaces, 17, 100386 (2019); https://doi.org/10.1016/j.surfin.2019.100386
C. Trilokesh and K.B. Uppuluri, Sci. Rep., 9, 16709 (2019); https://doi.org/10.1038/s41598-019-53412-x
S. Mueller, C. Weder and E.J. Foster, RSC Adv., 4, 907 (2019); https://doi.org/10.1039/C3RA46390G
L. Ravindran, S. M.S and S. Thomas, Int. J. Biol. Macromol., 131, 858 (2019); https://doi.org/10.1016/j.ijbiomac.2019.03.134
A.A. Benhamou, Z. Kassab, A. Boussetta, M.H. Salim, E.-H. Ablouh, M. Nadifiyine, A. El Kacem Qaiss, A. Moubarik and M. El Achaby, Int. J. Biol. Macromol., 203, 302 (2022); https://doi.org/10.1016/j.ijbiomac.2022.01.163
L.Y. Ng, T.J. Wong, C.Y. Ng and C.K.M. Amelia, Arab. J. Chem., 14, 103339 (2021); https://doi.org/10.1016/j.arabjc.2021.103339
N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka and M. Holub, Materials, 7, 8131 (2014); https://doi.org/10.3390/ma7128131
B.C. Okeke and S.K.C. Obi, Bioresour. Technol., 47, 283 (1994); https://doi.org/10.1016/0960-8524(94)90192-9
N. Shanugam, R.D. Nagarkar and K. Manisha, Indian J. Nat. Prod. Resour., 6, 42 (2015).
N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka and M. Holub, Materials, 7, 8131 (2014); https://doi.org/10.3390/ma7128131
R.M. Dos Santos, W.P.F. Neto, H.A. Silvério, D.F. Martins, N. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
J. Suesat and P. Suwanruji, Adv. Mater. Res., 332-334, 1781 (2011); https://doi.org/10.4028/www.scientific.net/AMR.332-334.1781
I.M. Fareez, N.A. Ibrahim, W.M.H. Wan Yaacob, N.A. Mamat Razali, A.H. Jasni and F. Abdul Aziz, Cellulose, 25, 4407 (2018); https://doi.org/10.1007/s10570-018-1878-0
F. Luzi, E. Fortunati, D. Puglia, M. Lavorgna, C. Santulli, J.M. Kenny and L. Torre, Ind. Crops Prod., 56, 175 (2014); https://doi.org/10.1016/j.indcrop.2014.03.006
S.A. Ahmed, A.R. Kazim and H.M. Hassan, World J. Exp. Biosci., 20, 120 (2017).
M.C.I. Mohd Amin, N. Ahmad, N. Halib and I. Ahmad, Carbohydr. Polym., 88, 465 (2012); https://doi.org/10.1016/j.carbpol.2011.12.022
E. Arrebola, V.J. Carrión, J.A. Gutiérrez-Barranquero, A. Pérez-García, P. Rodríguez-Palenzuela, F.M. Cazorla and A. Vicente, FEMS Microb. Ecol., 91, 5071 (2015); https://doi.org/10.1093/femsec/fiv071
R. Auta, G. Adamus, M. Kwiecien, I. Radecka and P. Hooley, African J. Biotechnol., 16, 470 (2017).
H.M.C. Azeredo, H. Barud, R.S. Farinas, V.M. Vasconcellos and A.M. Claro, Front. Sustain. Food Syst., 3, 7 (2019); https://doi.org/10.3389/fsufs.2019.00007
C. Babac, T. Kutsal and E. Piskin, Int. J. Natural Eng. Sci., 3, 19 (2009).
S. Bae and M. Shoda, Biotechnol. Prog., 20, 1366 (2004); https://doi.org/10.1021/bp0498490
H.S. Barud, T. Regiani, R.F. Marques, W.R. Lustri, Y. Messaddeq and S.J. Ribeiro, J. Nanomater., 2011, 721631 (2011); https://doi.org/10.1155/2011/721631
A. Bauer, W. Kirby, J. Sherris and M. Turck, Am. J. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
W. Czaja, A. Krystynowicz, M. Kawecki, K. Wysota, J. Glik, S. Sakiel, P. Wróblewski, M. Nowak and S. Bielecki, in Eds.: R.M. Brown and I.M. Saxena, Biomedical Applications of Microbial Cellulose in Burn Wound Recovery, In: Cellulose: Molecular and Structural Biology. Springer (2007); https://doi.org/10.1007/978-1-4020-5380-1_17
Y.J. Bomble, C.Y. Lin, A. Amore, E.K. Holwerda, P.N. Ciesielski, B.S. Donohoe, H. Wei, P.R. Chawla, I.B. Bajaj, S.A. Survase and R.S. Singhal, Food Technol. Biotechnol., 47, 107 (2009).
Y.J. Bomble, C.Y. Lin, A. Amore, H. Wei, E.K. Holwerda, P.N. Ciesielski, B.S. Donohoe, S.R. Decker, L.R. Lynd and M.E. Himmel, Curr. Opin. Chem. Biol., 41, 61 (2017); https://doi.org/10.1016/j.cbpa.2017.10.013
Y.J. Choi, Y. Ahn, M.S. Kang, H.K. Jun, I.S. Kim and S.H. Moon, J. Chem. Technol. Biotechnol., 79, 79 (2004); https://doi.org/10.1002/jctb.942
A.F.S. Costa, F.C.G. Almeida, G.M. Vinhas and L.A. Surubbo, Front. Microbiol., 8, 2027 (2017); https://doi.org/10.3389/fmicb.2017.02027
D. Pérez-Mendoza, A. Felipe, M.D. Ferreiro, J. Sanjuán and M.T. Gallegos, Front. Microbiol., 10, 746 (2019); https://doi.org/10.3389/fmicb.2019.00746
G.A. Farias, A. Olmedilla and M.T. Gallegos, Microb. Biotechnol., 12, 688 (2019); https://doi.org/10.1111/1751-7915.13385
J.F. Godinho, F.V. Berti, D. Müller, C.R. Rambo and L.M. Porto, Cellulose, 23, 545 (2016); https://doi.org/10.1007/s10570-015-0844-3
M. Iguchi, S. Yamanaka and A. Budhiono, J. Mater. Sci., 35, 261 (2000); https://doi.org/10.1023/A:1004775229149
R. Kumar, G. Mago, V. Balan and C.E. Wyman, Bioresour. Technol., 100, 3948 (2009); https://doi.org/10.1016/j.biortech.2009.01.075