Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structurally Characterized Non-Heme Fe(IV)Oxo Complexes: A Brief Overview
Corresponding Author(s) : Jhumpa Mukherjee
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
Iron(II) centers found in both heme and non-heme enzymes, are the most important metal centre responsible for effectively activating molecular oxygen. Activation of molecular oxygen is important for natural systems and many industrially important reactions. Iron(IV)oxo unit is one of the important intermediates found among the various high valent oxo iron intermediates formed during substrate oxidation in natural enzymes. In this review article, the different synthetic strategies were focused and followed to obtain the X-ray structurally characterized model iron(IV)oxo complexes with non-heme ligands. The ligands were categorized in three different classes and showed how designing a proper ligand, binding with Fe(II) center and reacting it with a suitable oxidizing agent can finally give rise to a system similar to natural systems. Stability of these complexes and some preliminary characterization have also been discussed. The crystallographic characterization of these synthetic models containing iron(IV)oxo intermediates was necessary to understand the mechanistic pathway they follow to mimic the difficult oxidation reactions performed by natural enzymes. In this review, not only the synthetic strategies for these non-heme iron(IV)oxo complexes were highlighted but a detailed structural analysis for these important intermediates were also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
- K. Ray, F.F. Pfaff, B. Wang and W. Nam, J. Am. Chem. Soc., 136, 13942 (2014); https://doi.org/10.1021/ja507807v
- K. Ray, F. Heims, M. Schwalbe and W. Nam, Curr. Opin. Chem. Biol., 25, 159 (2015); https://doi.org/10.1016/j.cbpa.2015.01.014
- J. Hohenberger, K. Ray and K. Meyer, Nat. Commun., 3, 720 (2012); https://doi.org/10.1038/ncomms1718
- C. Krebs, D.P. Galonic-Fujimori, C.T. Walsh and J.M. Bollinger Jr., Acc. Chem. Res., 40, 484 (2007); https://doi.org/10.1021/ar700066p
- R.P. Hausinger, Crit. Rev. Biochem. Mol. Biol., 39, 21 (2004); https://doi.org/10.1080/10409230490440541
- F.H. Vaillancourt, E. Yeh, D.A. Vosburg, S. Garneau-Tsodikova and C.T. Walsh, Chem. Rev., 106, 3364 (2006); https://doi.org/10.1021/cr050313i
- P.M. Wood, Biochem. J., 253, 287 (1988); https://doi.org/10.1042/bj2530287
- M. Guo, T. Corona, K. Ray and W. Nam, ACS Cent. Sci., 5, 13 (2019); https://doi.org/10.1021/acscentsci.8b00698
- S. Fukuzumi, Y.M. Lee and W. Nam, ChemCatChem, 10, 9 (2018); https://doi.org/10.1002/cctc.201701064
- W. Zhang, W. Lai and R. Cao, Chem. Rev., 117, 3717 (2017); https://doi.org/10.1021/acs.chemrev.6b00299
- F. Nastri, M. Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu and A. Lombardi, Chem. Soc. Rev., 45, 5020 (2016); https://doi.org/10.1039/C5CS00923E
- S. Hematian, I. Garcia-Bosch and K.D. Karlin, Acc. Chem. Res., 48, 2462 (2015); https://doi.org/10.1021/acs.accounts.5b00265
- E.L. Hegg and L. Que Jr., Eur. J. Biochem., 250, 625 (1997); https://doi.org/10.1111/j.1432-1033.1997.t01-1-00625.x
- C.W. Lee, J.-H. Lee, H. Rimal, H. Park, J.H. Lee and T.-J. Oh, Int. J. Mol. Sci., 17, 813 (2016); https://doi.org/10.3390/ijms17060813
- M. Gajhede, D. Schuller, A. Henriksen, T.A. Smith and L.T. Poulos, Nat. Struct. Mol. Biol., 4, 1032 (1997); https://doi.org/10.1038/nsb1297-1032
- Y. Yamada, T. Fujiwara, T. Sato, N. Igarashi and N. Tanaka, Nat. Struct. Biol., 9, 691 (2002); https://doi.org/10.1038/nsb834
- O. Andreas Andersen, T. Flatmark and E. Hough, J. Mol. Biol., 320, 1095 (2002); https://doi.org/10.1016/S0022-2836(02)00560-0
- K. Harlos, C.J. Schofield, Z. Zhang, J. Ren, D.K. Stammers and J.E. Baldwin, Nat. Struct. Biol., 7, 127 (2000); https://doi.org/10.1038/72398
- P.L. Roach, I.J. Clifton, C.M. Hensgens, N. Shibata, C.J. Schofield, J. Hajdu and J.E. Baldwin, Nature, 387, 827 (1997); https://doi.org/10.1038/42990
- E. Carredano, A. Karlsson, B. Kauppi, D. Choudhury, R.E. Parales, J.V. Parales, K. Lee, D.T. Gibson, H. Eklund and S. Ramaswamy, J. Mol. Biol., 296, 701 (2000); https://doi.org/10.1006/jmbi.1999.3462
- D.R. Tomchick, P. Phan, M. Cymborowski, W. Minor and T.R. Holman, Biochemistry, 40, 7509 (2001); https://doi.org/10.1021/bi002893d
- S. Han, L.D. Eltis, K.N. Timmis, S.W. Muchmore and J.T. Bolin, Science, 270, 976 (1995); https://doi.org/10.1126/science.270.5238.976
- H. Fujii, Coord. Chem. Rev., 226, 51 (2002); https://doi.org/10.1016/S0010-8545(01)00441-6
- J.H. Dawson and M. Sono, Chem. Rev., 87, 1255 (1987); https://doi.org/10.1021/cr00081a015
- Y. Watanabe and J.T. Groves, Eds.: P.D. Boyer and D.S. Sigman, Molecular Mechanism of Oxygen Activation by Cytochrome P-450, In: The Enzymes, Academic Press: New York, vol. 20, pp. 405-452 (1992).
- P.R. Ortiz de Montellano, Cytochrome P450, Plenum Press: New York, Ed.: 4 (2015).
- H.B. Dunford, Heme Peroxidases, Wiley-VCH: New York (1999).
- H.B. Dunford, Peroxidases and Catalases: Biochemistry, Biophysics, Biotechnology and Physpiology. Wiley, Ed.: 2 (2010).
- J. Everse, K.E. Everse and M.B. Grisham, Peroxidases in Chemistry and Biology, CRC Press: Boca Raton, Ed.: 1, vol. I & II (1991).
- J.C. Price, E.W. Barr, B. Tirupati, J.M. Bollinger Jr. and C. Krebs, Biochemistry, 42, 7497 (2003); https://doi.org/10.1021/bi030011f
- E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.K. Lee, N. Lehnert, F. Neese, A.J. Skulan, Y.S. Yang and J. Zhou, Chem. Rev., 100, 235 (2000); https://doi.org/10.1021/cr9900275
- E. De Carolis and V. de Luca, Phytochemistry, 36, 1093 (1994); https://doi.org/10.1016/S0031-9422(00)89621-1
- J.C. Boyington, B.J. Gaffney and L.M. Amzel, Science, 260, 1482 (1993); https://doi.org/10.1126/science.8502991
- E.I. Solomon, A. Decker and N. Lehnert, Proc. Natl. Acad. Sci. USA, 100, 3589 (2003); https://doi.org/10.1073/pnas.0336792100
- R.A. Leising, J. Kim, M.A. Perez and L. Que Jr, J. Am. Chem. Soc., 115, 9524 (1993); https://doi.org/10.1021/ja00074a017
- C.A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller and K. Wieghardt, Inorg. Chem., 39, 5306 (2000); https://doi.org/10.1021/ic0005238
- J.U. Rohde, J.H. In, M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E. Münck, W. Nam and L. Que Jr., Science, 299, 1037 (2003); https://doi.org/10.1126/science.299.5609.1037
- E.K. Barefield and F. Wagner, Inorg. Chem., 12, 2435 (1973); https://doi.org/10.1021/ic50128a042
- A. Thibon, J. England, M. Martinho, V.G. Young Jr., J.R. Frisch, R. Guillot, J.J. Girerd, E. Münck, L. Que Jr. and F. Banse, Angew. Chem. Int. Ed. Engl., 47, 7064 (2008); https://doi.org/10.1002/anie.200801832
- E.J. Klinker, J. Kaizer, W.W. Brennessel, N.L. Woodrum, C.J. Cramer and L. Que Jr., Angew. Chem. Int. Ed., 44, 3690 (2005); https://doi.org/10.1002/anie.200500485
- J. Kaizer, E.J. Klinker, N.Y. Oh, J.U. Rohde, W.J. Song, A. Stubna, J. Kim, E. Münck, W. Nam and L. Que Jr., J. Am. Chem. Soc., 126, 472 (2004); https://doi.org/10.1021/ja037288n
- M. Lubben, A. Meetsma, E.C. Wilkinson, B. Feringa and L. Que Jr., Angew. Chem. Int. Ed. Engl., 34, 1512 (1995); https://doi.org/10.1002/anie.199515121
- J. England, Y. Guo, E.R. Farquhar, V.G. Young Jr., E. Mu¨nck and L. Que Jr., J. Am. Chem. Soc., 132, 8635 (2010); https://doi.org/10.1021/ja100366c
- J.A. Halfen and V.G. Young Jr., Chem. Commun., 2894 (2003); https://doi.org/10.1039/b311520h
- C. Bucher, G. Royal, J.-M. Barbe and R. Guilard, Tetrahedron Lett., 40, 2315 (1999); https://doi.org/10.1016/S0040-4039(99)00190-2
- S. Sahu, M.G. Quesne, C.G. Davies, M. Dürr, I. Ivanovic-Burmazovic, M.A. Siegler, G.N.L. Jameson, S.P. de Visser and D.P. Goldberg, J. Am. Chem. Soc., 136, 13542 (2014); https://doi.org/10.1021/ja507346t
- S. Sahu, B. Zhang, C.J. Pollock, M. Dürr, C.G. Davies, A.M. Confer, I. Ivanovic-Burmazovic, M.A. Siegler, G.N. Jameson, C. Krebs and D.P. Goldberg, J. Am. Chem. Soc., 138, 12791 (2016); https://doi.org/10.1021/jacs.6b03346
- M. Mitra, H. Nimir, S. Demeshko, S.S. Bhat, S.O. Malinkin, M. Haukka, J. Lloret-Fillol, G.C. Lisensky, F. Meyer, A.A. Shteinman, W.R. Browne, D.A. Hrovat, M.G. Richmond, M. Costas and E. Nordlander, Inorg. Chem., 54, 7152 (2015); https://doi.org/10.1021/ic5029564
- W. Rasheed, A. Draksharapu, S. Banerjee, V.G. Young Jr., R. Fan, Y. Guo, M. Ozerov, J. Nehrkorn, J. Krzystek, J. Telser and L. Que Jr, Angew. Chem. Int. Ed., 130, 9531 (2018); https://doi.org/10.1002/ange.201804836
- H. Wittmann, V. Raab, A. Schorm, J. Plackmeyer and J. Sundermeyer, Eur. J. Inorg. Chem., 2001, 1937 (2001); https://doi.org/10.1002/1099-0682(200108)2001:8<1937::AIDEJIC1937>3.0.CO;2-I
- M.P. Lanci, V.V. Smirnov, E.V. Gauchenova, J. Sundermeyer, C.J. Cramer and J.P. Roth, J. Am. Chem. Soc., 129, 14697 (2007); https://doi.org/10.1021/ja074620c
- R.H. Holm, P. Kennepohl and E.I. Solomon, Chem. Rev., 96, 2239 (1996); https://doi.org/10.1021/cr9500390
- Y. Lu and J.S. Valentine, Curr. Opin. Struct. Biol., 7, 495 (1997); https://doi.org/10.1016/S0959-440X(97)80112-1
- R. César, A. Marta, M. Mercedes, W. Volker, M.M. Luisa, A. Victoria, C.M. Cruz and R.M. Joaquín, Chem. Lett., 24, 759 (1995); https://doi.org/10.1246/cl.1995.759
- S. Meyer, I. Klawitter, S. Demeshko, E. Bill and F. Meyer, Angew. Chem. Int. Ed. Engl., 52, 901 (2013); https://doi.org/10.1002/anie.201208044
- H.M. Bass, S.A. Cramer, J.L. Price and D.M. Jenkins, Organometallics, 29, 3235 (2010); https://doi.org/10.1021/om100625g
- E. Diez-Barra, A. De la Hoz, A. Sanchez-Migallon and J. Tejeda, Heterocycles, 34, 1365 (1992); https://doi.org/10.3987/COM-92-6024
- J. Prakash, G.T. Rohde, K.K. Meier, E. Münck and L. Que Jr., Inorg. Chem., 54, 11055 (2015); https://doi.org/10.1021/acs.inorgchem.5b02011
- S. Schaub, A. Miska, J. Becker, S. Zahn, D. Mollenhauer, S. Sakshath, V. Schünemann and S. Schindler, Angew. Chem. Int. Ed. Engl., 57, 5355 (2018); https://doi.org/10.1002/anie.201800475
- J. England, J.O. Bigelow, K.M. Van Heuvelen, E.R. Farquhar, M. Martinho, K.K. Meier, J.R. Frisch, E. Münck and L. Que, Chem. Sci., 5, 1204 (2014); https://doi.org/10.1039/C3SC52755G
- D.C. Lacy, R. Gupta, K.L. Stone, J. Greaves, J. Ziller, M.P. Hendrich and A.S. Borovik, J. Am. Chem. Soc., 132, 12188 (2010); https://doi.org/10.1021/ja1047818
- O. Pestovsky, S. Stoian, E.L. Bominaar, X. Shan, E. Münck, L. Que and A. Bakac, Angew. Chem., 117, 7031 (2005); https://doi.org/10.1002/ange.200502686
- T.A. Jackson, J.-U. Rohde, M.S. Seo, C.V. Sastri, R. DeHont, A. Stubna, T. Ohta, T. Kitagawa, E. Münck, W. Nam and L. Que, J. Am. Chem. Soc., 130, 12394 (2008); https://doi.org/10.1021/ja8022576
- D.-H. Chin, A.L. Balch and G.N. La Mar, J. Am. Chem. Soc., 102, 1446 (1980); https://doi.org/10.1021/ja00524a051
- S.O. Kim, C.V. Sastri, M.S. Seo, J. Kim and W. Nam, J. Am. Chem. Soc., 127, 4178 (2005); https://doi.org/10.1021/ja043083i
- J.E. Penner-Hahn, K. Smith Eble, T.J. McMurry, M. Renner, A.L. Balch, J.T. Groves, J.H. Dawson and K.O. Hodgson, J. Am. Chem. Soc., 108, 7819 (1986); https://doi.org/10.1021/ja00284a054
- T. Wolter, W. Meyer-Klaucke, M. Müther, D. Mandon, H. Winkler, A. X. Trautwein and R. Weiss, J. Inorg. Biochem., 78, 117 (2000); https://doi.org/10.1016/S0162-0134(99)00217-2
- C.J. Reed and T. Agapie, J. Am. Chem. Soc., 141, 9479 (2019); https://doi.org/10.1021/jacs.9b03157
- C.E. MacBeth, A.P. Golombek, V.G. Young Jr., C. Yang, K. Kuczera, M.P. Hendrich and A.S. Borovik, Science, 289, 938 (2000); https://doi.org/10.1126/science.289.5481.938
- E.M. Matson, Y.J. Park and A.R. Fout, J. Am. Chem. Soc., 136, 17398 (2014); https://doi.org/10.1021/ja510615p
- Y. Zang, Y. Dong, L. Que Jr., K. Kauffmann and E. Muenck, J. Am. Chem. Soc., 117, 1169 (1995); https://doi.org/10.1021/ja00108a050.
- G. Xue, D. Wang, R. De Hont, A.T. Fiedler, X. Shan, E. Münck and L. Que Jr., Proc. Natl. Acad. Sci. USA, 104, 20713 (2007); https://doi.org/10.1073/pnas.0708516105
- H.-F. Hsu, Y. Dong, L. Shu, V.G. Young Jr. and L. Que Jr., J. Am. Chem. Soc., 121, 5230 (1999); https://doi.org/10.1021/ja983666q
- A. Ghosh, F.T. de Oliveira, T. Yano, T. Nishioka, E.S. Beach, I. Kinoshita, E. Münck, A.D. Ryabov, C.P. Horwitz and T.J. Collins, J. Am. Chem. Soc., 127, 2505 (2005); https://doi.org/10.1021/ja0460458
- K. Ray, J. England, A.T. Fiedler, M. Martinho, E. Münck and L. Que Jr., Angew. Chem. Int. Ed., 47, 8068 (2008); https://doi.org/10.1002/anie.200802219
- L.G. Wade, Organic Chemistry, Pearson Prentice Hall: NJ, Ed.: 8 (2006).
- F.A. Carey, Organic Chemistry. McGraw Hill: New York, Ed.: 6 (2006).
- I. Klawitter, M.R. Anneser, S. Dechert, S. Demeshko, S. Haslinger, S. Meyer, A. Pöthig, F.E. Kühn and F. Meyer, Organometallics, 34, 2819 (2015); https://doi.org/10.1021/acs.organomet.5b00103
References
X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
K. Ray, F.F. Pfaff, B. Wang and W. Nam, J. Am. Chem. Soc., 136, 13942 (2014); https://doi.org/10.1021/ja507807v
K. Ray, F. Heims, M. Schwalbe and W. Nam, Curr. Opin. Chem. Biol., 25, 159 (2015); https://doi.org/10.1016/j.cbpa.2015.01.014
J. Hohenberger, K. Ray and K. Meyer, Nat. Commun., 3, 720 (2012); https://doi.org/10.1038/ncomms1718
C. Krebs, D.P. Galonic-Fujimori, C.T. Walsh and J.M. Bollinger Jr., Acc. Chem. Res., 40, 484 (2007); https://doi.org/10.1021/ar700066p
R.P. Hausinger, Crit. Rev. Biochem. Mol. Biol., 39, 21 (2004); https://doi.org/10.1080/10409230490440541
F.H. Vaillancourt, E. Yeh, D.A. Vosburg, S. Garneau-Tsodikova and C.T. Walsh, Chem. Rev., 106, 3364 (2006); https://doi.org/10.1021/cr050313i
P.M. Wood, Biochem. J., 253, 287 (1988); https://doi.org/10.1042/bj2530287
M. Guo, T. Corona, K. Ray and W. Nam, ACS Cent. Sci., 5, 13 (2019); https://doi.org/10.1021/acscentsci.8b00698
S. Fukuzumi, Y.M. Lee and W. Nam, ChemCatChem, 10, 9 (2018); https://doi.org/10.1002/cctc.201701064
W. Zhang, W. Lai and R. Cao, Chem. Rev., 117, 3717 (2017); https://doi.org/10.1021/acs.chemrev.6b00299
F. Nastri, M. Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu and A. Lombardi, Chem. Soc. Rev., 45, 5020 (2016); https://doi.org/10.1039/C5CS00923E
S. Hematian, I. Garcia-Bosch and K.D. Karlin, Acc. Chem. Res., 48, 2462 (2015); https://doi.org/10.1021/acs.accounts.5b00265
E.L. Hegg and L. Que Jr., Eur. J. Biochem., 250, 625 (1997); https://doi.org/10.1111/j.1432-1033.1997.t01-1-00625.x
C.W. Lee, J.-H. Lee, H. Rimal, H. Park, J.H. Lee and T.-J. Oh, Int. J. Mol. Sci., 17, 813 (2016); https://doi.org/10.3390/ijms17060813
M. Gajhede, D. Schuller, A. Henriksen, T.A. Smith and L.T. Poulos, Nat. Struct. Mol. Biol., 4, 1032 (1997); https://doi.org/10.1038/nsb1297-1032
Y. Yamada, T. Fujiwara, T. Sato, N. Igarashi and N. Tanaka, Nat. Struct. Biol., 9, 691 (2002); https://doi.org/10.1038/nsb834
O. Andreas Andersen, T. Flatmark and E. Hough, J. Mol. Biol., 320, 1095 (2002); https://doi.org/10.1016/S0022-2836(02)00560-0
K. Harlos, C.J. Schofield, Z. Zhang, J. Ren, D.K. Stammers and J.E. Baldwin, Nat. Struct. Biol., 7, 127 (2000); https://doi.org/10.1038/72398
P.L. Roach, I.J. Clifton, C.M. Hensgens, N. Shibata, C.J. Schofield, J. Hajdu and J.E. Baldwin, Nature, 387, 827 (1997); https://doi.org/10.1038/42990
E. Carredano, A. Karlsson, B. Kauppi, D. Choudhury, R.E. Parales, J.V. Parales, K. Lee, D.T. Gibson, H. Eklund and S. Ramaswamy, J. Mol. Biol., 296, 701 (2000); https://doi.org/10.1006/jmbi.1999.3462
D.R. Tomchick, P. Phan, M. Cymborowski, W. Minor and T.R. Holman, Biochemistry, 40, 7509 (2001); https://doi.org/10.1021/bi002893d
S. Han, L.D. Eltis, K.N. Timmis, S.W. Muchmore and J.T. Bolin, Science, 270, 976 (1995); https://doi.org/10.1126/science.270.5238.976
H. Fujii, Coord. Chem. Rev., 226, 51 (2002); https://doi.org/10.1016/S0010-8545(01)00441-6
J.H. Dawson and M. Sono, Chem. Rev., 87, 1255 (1987); https://doi.org/10.1021/cr00081a015
Y. Watanabe and J.T. Groves, Eds.: P.D. Boyer and D.S. Sigman, Molecular Mechanism of Oxygen Activation by Cytochrome P-450, In: The Enzymes, Academic Press: New York, vol. 20, pp. 405-452 (1992).
P.R. Ortiz de Montellano, Cytochrome P450, Plenum Press: New York, Ed.: 4 (2015).
H.B. Dunford, Heme Peroxidases, Wiley-VCH: New York (1999).
H.B. Dunford, Peroxidases and Catalases: Biochemistry, Biophysics, Biotechnology and Physpiology. Wiley, Ed.: 2 (2010).
J. Everse, K.E. Everse and M.B. Grisham, Peroxidases in Chemistry and Biology, CRC Press: Boca Raton, Ed.: 1, vol. I & II (1991).
J.C. Price, E.W. Barr, B. Tirupati, J.M. Bollinger Jr. and C. Krebs, Biochemistry, 42, 7497 (2003); https://doi.org/10.1021/bi030011f
E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.K. Lee, N. Lehnert, F. Neese, A.J. Skulan, Y.S. Yang and J. Zhou, Chem. Rev., 100, 235 (2000); https://doi.org/10.1021/cr9900275
E. De Carolis and V. de Luca, Phytochemistry, 36, 1093 (1994); https://doi.org/10.1016/S0031-9422(00)89621-1
J.C. Boyington, B.J. Gaffney and L.M. Amzel, Science, 260, 1482 (1993); https://doi.org/10.1126/science.8502991
E.I. Solomon, A. Decker and N. Lehnert, Proc. Natl. Acad. Sci. USA, 100, 3589 (2003); https://doi.org/10.1073/pnas.0336792100
R.A. Leising, J. Kim, M.A. Perez and L. Que Jr, J. Am. Chem. Soc., 115, 9524 (1993); https://doi.org/10.1021/ja00074a017
C.A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller and K. Wieghardt, Inorg. Chem., 39, 5306 (2000); https://doi.org/10.1021/ic0005238
J.U. Rohde, J.H. In, M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E. Münck, W. Nam and L. Que Jr., Science, 299, 1037 (2003); https://doi.org/10.1126/science.299.5609.1037
E.K. Barefield and F. Wagner, Inorg. Chem., 12, 2435 (1973); https://doi.org/10.1021/ic50128a042
A. Thibon, J. England, M. Martinho, V.G. Young Jr., J.R. Frisch, R. Guillot, J.J. Girerd, E. Münck, L. Que Jr. and F. Banse, Angew. Chem. Int. Ed. Engl., 47, 7064 (2008); https://doi.org/10.1002/anie.200801832
E.J. Klinker, J. Kaizer, W.W. Brennessel, N.L. Woodrum, C.J. Cramer and L. Que Jr., Angew. Chem. Int. Ed., 44, 3690 (2005); https://doi.org/10.1002/anie.200500485
J. Kaizer, E.J. Klinker, N.Y. Oh, J.U. Rohde, W.J. Song, A. Stubna, J. Kim, E. Münck, W. Nam and L. Que Jr., J. Am. Chem. Soc., 126, 472 (2004); https://doi.org/10.1021/ja037288n
M. Lubben, A. Meetsma, E.C. Wilkinson, B. Feringa and L. Que Jr., Angew. Chem. Int. Ed. Engl., 34, 1512 (1995); https://doi.org/10.1002/anie.199515121
J. England, Y. Guo, E.R. Farquhar, V.G. Young Jr., E. Mu¨nck and L. Que Jr., J. Am. Chem. Soc., 132, 8635 (2010); https://doi.org/10.1021/ja100366c
J.A. Halfen and V.G. Young Jr., Chem. Commun., 2894 (2003); https://doi.org/10.1039/b311520h
C. Bucher, G. Royal, J.-M. Barbe and R. Guilard, Tetrahedron Lett., 40, 2315 (1999); https://doi.org/10.1016/S0040-4039(99)00190-2
S. Sahu, M.G. Quesne, C.G. Davies, M. Dürr, I. Ivanovic-Burmazovic, M.A. Siegler, G.N.L. Jameson, S.P. de Visser and D.P. Goldberg, J. Am. Chem. Soc., 136, 13542 (2014); https://doi.org/10.1021/ja507346t
S. Sahu, B. Zhang, C.J. Pollock, M. Dürr, C.G. Davies, A.M. Confer, I. Ivanovic-Burmazovic, M.A. Siegler, G.N. Jameson, C. Krebs and D.P. Goldberg, J. Am. Chem. Soc., 138, 12791 (2016); https://doi.org/10.1021/jacs.6b03346
M. Mitra, H. Nimir, S. Demeshko, S.S. Bhat, S.O. Malinkin, M. Haukka, J. Lloret-Fillol, G.C. Lisensky, F. Meyer, A.A. Shteinman, W.R. Browne, D.A. Hrovat, M.G. Richmond, M. Costas and E. Nordlander, Inorg. Chem., 54, 7152 (2015); https://doi.org/10.1021/ic5029564
W. Rasheed, A. Draksharapu, S. Banerjee, V.G. Young Jr., R. Fan, Y. Guo, M. Ozerov, J. Nehrkorn, J. Krzystek, J. Telser and L. Que Jr, Angew. Chem. Int. Ed., 130, 9531 (2018); https://doi.org/10.1002/ange.201804836
H. Wittmann, V. Raab, A. Schorm, J. Plackmeyer and J. Sundermeyer, Eur. J. Inorg. Chem., 2001, 1937 (2001); https://doi.org/10.1002/1099-0682(200108)2001:8<1937::AIDEJIC1937>3.0.CO;2-I
M.P. Lanci, V.V. Smirnov, E.V. Gauchenova, J. Sundermeyer, C.J. Cramer and J.P. Roth, J. Am. Chem. Soc., 129, 14697 (2007); https://doi.org/10.1021/ja074620c
R.H. Holm, P. Kennepohl and E.I. Solomon, Chem. Rev., 96, 2239 (1996); https://doi.org/10.1021/cr9500390
Y. Lu and J.S. Valentine, Curr. Opin. Struct. Biol., 7, 495 (1997); https://doi.org/10.1016/S0959-440X(97)80112-1
R. César, A. Marta, M. Mercedes, W. Volker, M.M. Luisa, A. Victoria, C.M. Cruz and R.M. Joaquín, Chem. Lett., 24, 759 (1995); https://doi.org/10.1246/cl.1995.759
S. Meyer, I. Klawitter, S. Demeshko, E. Bill and F. Meyer, Angew. Chem. Int. Ed. Engl., 52, 901 (2013); https://doi.org/10.1002/anie.201208044
H.M. Bass, S.A. Cramer, J.L. Price and D.M. Jenkins, Organometallics, 29, 3235 (2010); https://doi.org/10.1021/om100625g
E. Diez-Barra, A. De la Hoz, A. Sanchez-Migallon and J. Tejeda, Heterocycles, 34, 1365 (1992); https://doi.org/10.3987/COM-92-6024
J. Prakash, G.T. Rohde, K.K. Meier, E. Münck and L. Que Jr., Inorg. Chem., 54, 11055 (2015); https://doi.org/10.1021/acs.inorgchem.5b02011
S. Schaub, A. Miska, J. Becker, S. Zahn, D. Mollenhauer, S. Sakshath, V. Schünemann and S. Schindler, Angew. Chem. Int. Ed. Engl., 57, 5355 (2018); https://doi.org/10.1002/anie.201800475
J. England, J.O. Bigelow, K.M. Van Heuvelen, E.R. Farquhar, M. Martinho, K.K. Meier, J.R. Frisch, E. Münck and L. Que, Chem. Sci., 5, 1204 (2014); https://doi.org/10.1039/C3SC52755G
D.C. Lacy, R. Gupta, K.L. Stone, J. Greaves, J. Ziller, M.P. Hendrich and A.S. Borovik, J. Am. Chem. Soc., 132, 12188 (2010); https://doi.org/10.1021/ja1047818
O. Pestovsky, S. Stoian, E.L. Bominaar, X. Shan, E. Münck, L. Que and A. Bakac, Angew. Chem., 117, 7031 (2005); https://doi.org/10.1002/ange.200502686
T.A. Jackson, J.-U. Rohde, M.S. Seo, C.V. Sastri, R. DeHont, A. Stubna, T. Ohta, T. Kitagawa, E. Münck, W. Nam and L. Que, J. Am. Chem. Soc., 130, 12394 (2008); https://doi.org/10.1021/ja8022576
D.-H. Chin, A.L. Balch and G.N. La Mar, J. Am. Chem. Soc., 102, 1446 (1980); https://doi.org/10.1021/ja00524a051
S.O. Kim, C.V. Sastri, M.S. Seo, J. Kim and W. Nam, J. Am. Chem. Soc., 127, 4178 (2005); https://doi.org/10.1021/ja043083i
J.E. Penner-Hahn, K. Smith Eble, T.J. McMurry, M. Renner, A.L. Balch, J.T. Groves, J.H. Dawson and K.O. Hodgson, J. Am. Chem. Soc., 108, 7819 (1986); https://doi.org/10.1021/ja00284a054
T. Wolter, W. Meyer-Klaucke, M. Müther, D. Mandon, H. Winkler, A. X. Trautwein and R. Weiss, J. Inorg. Biochem., 78, 117 (2000); https://doi.org/10.1016/S0162-0134(99)00217-2
C.J. Reed and T. Agapie, J. Am. Chem. Soc., 141, 9479 (2019); https://doi.org/10.1021/jacs.9b03157
C.E. MacBeth, A.P. Golombek, V.G. Young Jr., C. Yang, K. Kuczera, M.P. Hendrich and A.S. Borovik, Science, 289, 938 (2000); https://doi.org/10.1126/science.289.5481.938
E.M. Matson, Y.J. Park and A.R. Fout, J. Am. Chem. Soc., 136, 17398 (2014); https://doi.org/10.1021/ja510615p
Y. Zang, Y. Dong, L. Que Jr., K. Kauffmann and E. Muenck, J. Am. Chem. Soc., 117, 1169 (1995); https://doi.org/10.1021/ja00108a050.
G. Xue, D. Wang, R. De Hont, A.T. Fiedler, X. Shan, E. Münck and L. Que Jr., Proc. Natl. Acad. Sci. USA, 104, 20713 (2007); https://doi.org/10.1073/pnas.0708516105
H.-F. Hsu, Y. Dong, L. Shu, V.G. Young Jr. and L. Que Jr., J. Am. Chem. Soc., 121, 5230 (1999); https://doi.org/10.1021/ja983666q
A. Ghosh, F.T. de Oliveira, T. Yano, T. Nishioka, E.S. Beach, I. Kinoshita, E. Münck, A.D. Ryabov, C.P. Horwitz and T.J. Collins, J. Am. Chem. Soc., 127, 2505 (2005); https://doi.org/10.1021/ja0460458
K. Ray, J. England, A.T. Fiedler, M. Martinho, E. Münck and L. Que Jr., Angew. Chem. Int. Ed., 47, 8068 (2008); https://doi.org/10.1002/anie.200802219
L.G. Wade, Organic Chemistry, Pearson Prentice Hall: NJ, Ed.: 8 (2006).
F.A. Carey, Organic Chemistry. McGraw Hill: New York, Ed.: 6 (2006).
I. Klawitter, M.R. Anneser, S. Dechert, S. Demeshko, S. Haslinger, S. Meyer, A. Pöthig, F.E. Kühn and F. Meyer, Organometallics, 34, 2819 (2015); https://doi.org/10.1021/acs.organomet.5b00103