Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ionic Association of Potassium and Tetrabutylammonium Thiocyanate Salts in Binary Mixtures of γ-Butyrolactone and N,N-Dimethylacetamide at 298.15 K and 308.15 K
Corresponding Author(s) : Suresh Kumar
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
Solvation consequences of potassium thiocyanate (KSCN) and tetrabutylammonium thiocyanate (Bu4NSCN) in γ-butyrolactone (GBL), N,N-dimethylacetamide (DMA) and their binary mixtures in concentration range (0.01-0.001) mol Kg–1 of 0, 25, 50, 60, 80 and 100 mol% DMA at T = 298.15 K and 308.15 K have been studied using conductometric study and some samples of KSCN in GBL + DMA binary mixtures of different electrolytic concentrations at ambient conditions studied by FTIR spectroscopic methods. The Shedlovsky equation has been used to elucidate the data in terms of the limiting molar conductances (Λo), ion-pair association constants (KA). The Walden products (Λoho), solvated radii (ri) and standard free energies of association (ΔGºA) were further evaluated in terms of solvation of ions. The reference electrolyte tetrabutylammonium tetraphenylborate (Bu4NBPh4) was used to determine the limiting molar ionic conductances. In pure solvents and their binary mixtures, electrolytes showed a strong association. The K+ ions have greater solvation in GBL than in DMA observed on basis of solvated radii in GBL + DMA binary solvent mixtures at both experimental temperatures. The study demonstrates that the ion-solvent interactions decrease on enhancing the temperature. The FTIR analysis was applied to obtain information about molecular as well as ionic association of KSCN in GBL + DMA binary mixtures at the ambient conditions, which has provided the information on structuring infrared modes of vibrational stretching frequencies according to the nature of the solvents or the cations. Shifting of vibrational frequencies of several functional groups of DMA and GBL in binary mixed solvents has been observed in terms of ion-ion, ion-solvent and solvent-solvent interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Guha and B. Das, J. Mol. Liq., 193, 132 (2014); https://doi.org/10.1016/j.molliq.2013.12.025
- D. Das, B. Das and D.K. Hazra, J. Sol. Chem., 32, 85 (2003); https://doi.org/10.1023/A:1022601000208
- L.P. Safonova, D.V. Sakharov, L.E. Shmukler and A.M. Kolker, Phys. Chem. Chem. Phys., 3, 819 (2001); https://doi.org/10.1039/b006029l
- D. Gill and V. Pathania, Adv. Inorg. Chem., 68, 441 (2016); https://doi.org/10.1016/bs.adioch.2015.11.001
- D.S. Gill, H. Anand and J.K. Puri, Z. Naturforschung. A, 59, 615 (2004); https://doi.org/10.1515/zna-2004-0912
- D.S. Gill, A. Kumari, R. Gupta, S.P. Jauhar and J.K. Puri, Z. Phys. Chem., 219, 1099 (2005); https://doi.org/10.1524/zpch.2005.219.8.1099
- U.N. Dash, G.S. Roy, D. Moharatha and M. Talukdar, Phys. Chem. Liq., 49, 421 (2011); https://doi.org/10.1080/00319100903456162
- M. Zhou, P. Bai, X. Ji, J. Yang, C. Wang and Y. Xu, Adv. Mater., 33, 2003741 (2021); https://doi.org/10.1002/adma.202003741
- L. Suo, Y.-S. Hu, H. Li, M. Armand and L. Chen, Nat. Commun., 4, 1481 (2013); https://doi.org/10.1038/ncomms2513
- V. Pathania, M. Kaur, B.K. Vermani, D.S. Veneeta and D.S. Gill, J. Solution Chem., 50, 867 (2021); https://doi.org/10.1007/s10953-021-01086-3
- D.S. Gill and V. Pathania, B.K. Vermani and R.P. Sharma, Z. Phys. Chem., 217, 739 (2003); https://doi.org/10.1524/zpch.217.6.739.20446
- M.U. Ibezim-Ezeani, L.I. Menegbo, A.A. Abia, Int. J. Scient. Eng. Res., 5, 13 (2017).
- M. Talukdar, S. Singh and S.K. Dehuri, Biointerface Res. Appl. Chem., 10, 5355 (2020); https://doi.org/10.33263/BRIAC103.355360
- A. Bhattacharjee and M.N. Roy, Phys. Chem. Chem. Phys., 12, 14534 (2010); https://doi.org/10.1039/c0cp00532k
- B. Dalai, P. Kar, B. Kuanar, S.K. Dash and S.K. Singh, Biointerface Res. Appl. Chem., 10, 5880 (2020); https://doi.org/10.33263/BRIAC104.880885
- T.V. Chernozhuk, Y.S. Sherstyuk, D.O. Novikov and O.N. Kalugin, Russian J. Phys. Chem. A, 90, 329 (2016); https://doi.org/10.1134/S0036024416020096
- J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhond and U. von Sacken, Eds.: G. Pistoia, Lithium Batteries: New Materials, Developments and Perspectives, Elsevier: New York, Chap. 1 (1994).
- D. Das, Z. Barhoumi and N. Ouerfelli, Phys. Chem. Liq., 50, 346 (2012); https://doi.org/10.1080/00319104.2011.646516
- G.P. Dubey and L. Dhingra, J. Chem. Thermodyn., 157, 106388 (2021); https://doi.org/10.1016/j.jct.2021.106388
- M. Ue, J. Electrochem. Soc., 141, 3336 (1994); https://doi.org/10.1149/1.2059336
- H.S.P. Müller, D.T. Halfen and L.M. Ziurys, J. Mol. Spectrosc., 272, 23 (2012); https://doi.org/10.1016/j.jms.2011.12.005
- D.M. Verbovy, T.G. Smagala, M.A. Brynda and W.R. Fawcett, J. Mol. Liq., 129, 13 (2006); https://doi.org/10.1016/j.molliq.2006.08.008
- C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons (2011).
- K.M. Abraham, ACS Energy Lett., 5, 3544 (2020); https://doi.org/10.1021/acsenergylett.0c02181
- E.F. Da Silva and W.A. Alves, Vib. Spectrosc., 62, 264 (2012); https://doi.org/10.1016/j.vibspec.2012.05.011
- J. Wang, X. Xuan, J. Lu, N. Pei and Y. Mo, Z. Phys. Chem., 215, 437 (2001); https://doi.org/10.1524/zpch.2001.215.4.437
- D. Das, B. Das and D.K. Hazra, Z. Phys. Chem., 218, 341 (2004); https://doi.org/10.1524/zpch.218.3.341.26490
- M. Sakiyama, H. Suga and S. Seki, Bull. Chem. Soc. Jpn., 36, 1025 (1963); https://doi.org/10.1246/bcsj.36.1025
- S. Kumar and H. Anand, Indian J. Chem., 61A, 245 (2022).
- S. Kumar, H. Anand and N. Singh, Asian J. Chem., 33, 2924 (2021); https://doi.org/10.14233/ajchem.2021.23401
- S. Kumar, N. Singh and H. Anand, Asian J. Chem., 33, 1415 (2021); https://doi.org/10.14233/ajchem.2021.23273
- G. Ritzoulis, D. Missopolinou, S. Doulami and C. Panayiotou, J. Chem. Eng. Data, 45, 636 (2000); https://doi.org/10.1021/je990226l
- R. Zarrougui, M. Dhahbi and D. Lemordant, J. Solution Chem., 39, 1531 (2010); https://doi.org/10.1007/s10953-010-9600-3
- J.A. Dean, Lange’s Handbook of Chemistry, McGraw-Hill Companies, Ed. 13 (1985).
- G. Ritzoulis and A. Fidantsi, J. Chem. Eng. Data, 45, 207 (2000); https://doi.org/10.1021/je990116e
- J.N. Obowu, M.U. Ibezim-Ezeani, A.A. Abia, Int. J. Appl. Sci Technol., 8, 87 (2018); https://doi.org/10.30845/ijast.v8n3p8
- J.E. Lind Jr., J.J. Zwolenik and R.M. Fuoss, J. Am. Chem. Soc., 81, 1557 (1959); https://doi.org/10.1021/ja01516a010
- A. Wypych-Stasiewicz, A. Szejgis, A. Chmielewska and A. Bald, J. Mol. Liq., 130, 34 (2007); https://doi.org/10.1016/j.molliq.2006.04.002
- M. Ue, Electrochim. Acta, 39, 2083 (1994); https://doi.org/10.1016/0013-4686(94)85092-5
- M. Nazri, Liquid Electrolytes: Some Theoretical and Practical Aspects, In: Lithium Batteries, Springer, pp. 509–529 (2009).
- J.-C. Justice, Electrochim. Acta, 16, 701 (1971); https://doi.org/10.1016/0013-4686(71)85038-7
- R. Chanda and M.N. Roy, Z. Phys. Chem., 224, 827 (2010); https://doi.org/10.1524/zpch.2010.5509
- D. Das, B. Das and D.K. Hazra, J. Solution Chem., 32, 85 (2003); https://doi.org/10.1023/A:1022601000208
- R. Dewan and M.N. Roy, J. Chem. Thermodyn., 54, 28 (2012); https://doi.org/10.1016/j.jct.2012.03.002
- C. Guha, J.M. Chakraborty, S. Karanjai and B. Das, J. Phys. Chem. B, 107, 12814 (2003); https://doi.org/10.1021/jp030731w
- F.A. Saif, P.B. Undre, S.A. Yaseen, A.S. Alameen, S.S. Patil and P.W. Khirade, Integr. Ferroelectr., 202, 79 (2019); https://doi.org/10.1080/10584587.2019.1674826
- E.A. Gomaa, R.R. Zaky and A. Shokr, J. Mol. Liq., 242, 913 (2017); https://doi.org/10.1016/j.molliq.2017.07.108
- E. Gomaa and R.M. Abu-Qarn, J. Mol. Liq., 232, 319 (2017); https://doi.org/10.1016/j.molliq.2017.02.085
- M. Bester-Rogac, R. Neueder and J. Barthel, J. Solut. Chem., 28, 1071 (1999); https://doi.org/10.1023/A:1022625310402
- J.M. Chakraborty and B. Das, Z. Phys. Chem., 218, 219 (2004); https://doi.org/10.1524/zpch.218.2.219.25926
- M.N. Roy, R. Dey and A. Jha, J. Chem. Eng. Data, 46, 1327 (2001); https://doi.org/10.1021/je010009w
- A.K. Srivastava and S.L. Shankar, J. Chem. Eng. Data, 43, 25 (1998); https://doi.org/10.1021/je970132g
- D. Parvatalu and A.K. Srivastava, J. Chem. Eng. Data, 53, 933 (2008); https://doi.org/10.1021/je700579b
- N. Inoue, M. Xu and S. Petrucci, J. Phys. Chem., 91, 4628 (1987); https://doi.org/10.1021/j100301a040
- E.A. Gomaa and M.A. Tahoon, J. Mol. Liq., 214, 19 (2016); https://doi.org/10.1016/j.molliq.2015.11.046
- D.S. Gill, Electrochim. Acta, 24, 701 (1979); https://doi.org/10.1016/0013-4686(79)87054-1
- V.S. Bhat and A.K. Srivastava, J. Chem. Eng. Data, 46, 1215 (2001); https://doi.org/10.1021/je010097k
- A.K. Covington and T. Dickinson, Introduction and Solvent Properties, In: Physical Chemistry of Organic Solvent Systems, Springer, pp. 1-22 (1973); https://doi.org/10.1007/978-1-4684-1959-7_1
- D.P. McDermott, J. Phys. Chem., 90, 2569 (1986); https://doi.org/10.1021/j100403a006
- W.R. Fawcett, P. Brooksby, D. Verbovy, I. Bakó and G. Pálinkás, J. Mol. Liq., 118, 171 (2005); https://doi.org/10.1016/j.molliq.2004.07.034
- M.D. Vedenyapina, T.L. Kulova, Y.O. Kudryashova, A.M. Skundin, O.R. Malyshev and L.M. Glukhov, Russian J. Phys. Chem. A, 94, 1276 (2020); https://doi.org/10.1134/S0036024420060308
- A. Sarkar, D. Mishra and B. Sinha, Indian J. Adv. Chem. Sci., 4, 180 (2016)
References
C. Guha and B. Das, J. Mol. Liq., 193, 132 (2014); https://doi.org/10.1016/j.molliq.2013.12.025
D. Das, B. Das and D.K. Hazra, J. Sol. Chem., 32, 85 (2003); https://doi.org/10.1023/A:1022601000208
L.P. Safonova, D.V. Sakharov, L.E. Shmukler and A.M. Kolker, Phys. Chem. Chem. Phys., 3, 819 (2001); https://doi.org/10.1039/b006029l
D. Gill and V. Pathania, Adv. Inorg. Chem., 68, 441 (2016); https://doi.org/10.1016/bs.adioch.2015.11.001
D.S. Gill, H. Anand and J.K. Puri, Z. Naturforschung. A, 59, 615 (2004); https://doi.org/10.1515/zna-2004-0912
D.S. Gill, A. Kumari, R. Gupta, S.P. Jauhar and J.K. Puri, Z. Phys. Chem., 219, 1099 (2005); https://doi.org/10.1524/zpch.2005.219.8.1099
U.N. Dash, G.S. Roy, D. Moharatha and M. Talukdar, Phys. Chem. Liq., 49, 421 (2011); https://doi.org/10.1080/00319100903456162
M. Zhou, P. Bai, X. Ji, J. Yang, C. Wang and Y. Xu, Adv. Mater., 33, 2003741 (2021); https://doi.org/10.1002/adma.202003741
L. Suo, Y.-S. Hu, H. Li, M. Armand and L. Chen, Nat. Commun., 4, 1481 (2013); https://doi.org/10.1038/ncomms2513
V. Pathania, M. Kaur, B.K. Vermani, D.S. Veneeta and D.S. Gill, J. Solution Chem., 50, 867 (2021); https://doi.org/10.1007/s10953-021-01086-3
D.S. Gill and V. Pathania, B.K. Vermani and R.P. Sharma, Z. Phys. Chem., 217, 739 (2003); https://doi.org/10.1524/zpch.217.6.739.20446
M.U. Ibezim-Ezeani, L.I. Menegbo, A.A. Abia, Int. J. Scient. Eng. Res., 5, 13 (2017).
M. Talukdar, S. Singh and S.K. Dehuri, Biointerface Res. Appl. Chem., 10, 5355 (2020); https://doi.org/10.33263/BRIAC103.355360
A. Bhattacharjee and M.N. Roy, Phys. Chem. Chem. Phys., 12, 14534 (2010); https://doi.org/10.1039/c0cp00532k
B. Dalai, P. Kar, B. Kuanar, S.K. Dash and S.K. Singh, Biointerface Res. Appl. Chem., 10, 5880 (2020); https://doi.org/10.33263/BRIAC104.880885
T.V. Chernozhuk, Y.S. Sherstyuk, D.O. Novikov and O.N. Kalugin, Russian J. Phys. Chem. A, 90, 329 (2016); https://doi.org/10.1134/S0036024416020096
J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhond and U. von Sacken, Eds.: G. Pistoia, Lithium Batteries: New Materials, Developments and Perspectives, Elsevier: New York, Chap. 1 (1994).
D. Das, Z. Barhoumi and N. Ouerfelli, Phys. Chem. Liq., 50, 346 (2012); https://doi.org/10.1080/00319104.2011.646516
G.P. Dubey and L. Dhingra, J. Chem. Thermodyn., 157, 106388 (2021); https://doi.org/10.1016/j.jct.2021.106388
M. Ue, J. Electrochem. Soc., 141, 3336 (1994); https://doi.org/10.1149/1.2059336
H.S.P. Müller, D.T. Halfen and L.M. Ziurys, J. Mol. Spectrosc., 272, 23 (2012); https://doi.org/10.1016/j.jms.2011.12.005
D.M. Verbovy, T.G. Smagala, M.A. Brynda and W.R. Fawcett, J. Mol. Liq., 129, 13 (2006); https://doi.org/10.1016/j.molliq.2006.08.008
C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons (2011).
K.M. Abraham, ACS Energy Lett., 5, 3544 (2020); https://doi.org/10.1021/acsenergylett.0c02181
E.F. Da Silva and W.A. Alves, Vib. Spectrosc., 62, 264 (2012); https://doi.org/10.1016/j.vibspec.2012.05.011
J. Wang, X. Xuan, J. Lu, N. Pei and Y. Mo, Z. Phys. Chem., 215, 437 (2001); https://doi.org/10.1524/zpch.2001.215.4.437
D. Das, B. Das and D.K. Hazra, Z. Phys. Chem., 218, 341 (2004); https://doi.org/10.1524/zpch.218.3.341.26490
M. Sakiyama, H. Suga and S. Seki, Bull. Chem. Soc. Jpn., 36, 1025 (1963); https://doi.org/10.1246/bcsj.36.1025
S. Kumar and H. Anand, Indian J. Chem., 61A, 245 (2022).
S. Kumar, H. Anand and N. Singh, Asian J. Chem., 33, 2924 (2021); https://doi.org/10.14233/ajchem.2021.23401
S. Kumar, N. Singh and H. Anand, Asian J. Chem., 33, 1415 (2021); https://doi.org/10.14233/ajchem.2021.23273
G. Ritzoulis, D. Missopolinou, S. Doulami and C. Panayiotou, J. Chem. Eng. Data, 45, 636 (2000); https://doi.org/10.1021/je990226l
R. Zarrougui, M. Dhahbi and D. Lemordant, J. Solution Chem., 39, 1531 (2010); https://doi.org/10.1007/s10953-010-9600-3
J.A. Dean, Lange’s Handbook of Chemistry, McGraw-Hill Companies, Ed. 13 (1985).
G. Ritzoulis and A. Fidantsi, J. Chem. Eng. Data, 45, 207 (2000); https://doi.org/10.1021/je990116e
J.N. Obowu, M.U. Ibezim-Ezeani, A.A. Abia, Int. J. Appl. Sci Technol., 8, 87 (2018); https://doi.org/10.30845/ijast.v8n3p8
J.E. Lind Jr., J.J. Zwolenik and R.M. Fuoss, J. Am. Chem. Soc., 81, 1557 (1959); https://doi.org/10.1021/ja01516a010
A. Wypych-Stasiewicz, A. Szejgis, A. Chmielewska and A. Bald, J. Mol. Liq., 130, 34 (2007); https://doi.org/10.1016/j.molliq.2006.04.002
M. Ue, Electrochim. Acta, 39, 2083 (1994); https://doi.org/10.1016/0013-4686(94)85092-5
M. Nazri, Liquid Electrolytes: Some Theoretical and Practical Aspects, In: Lithium Batteries, Springer, pp. 509–529 (2009).
J.-C. Justice, Electrochim. Acta, 16, 701 (1971); https://doi.org/10.1016/0013-4686(71)85038-7
R. Chanda and M.N. Roy, Z. Phys. Chem., 224, 827 (2010); https://doi.org/10.1524/zpch.2010.5509
D. Das, B. Das and D.K. Hazra, J. Solution Chem., 32, 85 (2003); https://doi.org/10.1023/A:1022601000208
R. Dewan and M.N. Roy, J. Chem. Thermodyn., 54, 28 (2012); https://doi.org/10.1016/j.jct.2012.03.002
C. Guha, J.M. Chakraborty, S. Karanjai and B. Das, J. Phys. Chem. B, 107, 12814 (2003); https://doi.org/10.1021/jp030731w
F.A. Saif, P.B. Undre, S.A. Yaseen, A.S. Alameen, S.S. Patil and P.W. Khirade, Integr. Ferroelectr., 202, 79 (2019); https://doi.org/10.1080/10584587.2019.1674826
E.A. Gomaa, R.R. Zaky and A. Shokr, J. Mol. Liq., 242, 913 (2017); https://doi.org/10.1016/j.molliq.2017.07.108
E. Gomaa and R.M. Abu-Qarn, J. Mol. Liq., 232, 319 (2017); https://doi.org/10.1016/j.molliq.2017.02.085
M. Bester-Rogac, R. Neueder and J. Barthel, J. Solut. Chem., 28, 1071 (1999); https://doi.org/10.1023/A:1022625310402
J.M. Chakraborty and B. Das, Z. Phys. Chem., 218, 219 (2004); https://doi.org/10.1524/zpch.218.2.219.25926
M.N. Roy, R. Dey and A. Jha, J. Chem. Eng. Data, 46, 1327 (2001); https://doi.org/10.1021/je010009w
A.K. Srivastava and S.L. Shankar, J. Chem. Eng. Data, 43, 25 (1998); https://doi.org/10.1021/je970132g
D. Parvatalu and A.K. Srivastava, J. Chem. Eng. Data, 53, 933 (2008); https://doi.org/10.1021/je700579b
N. Inoue, M. Xu and S. Petrucci, J. Phys. Chem., 91, 4628 (1987); https://doi.org/10.1021/j100301a040
E.A. Gomaa and M.A. Tahoon, J. Mol. Liq., 214, 19 (2016); https://doi.org/10.1016/j.molliq.2015.11.046
D.S. Gill, Electrochim. Acta, 24, 701 (1979); https://doi.org/10.1016/0013-4686(79)87054-1
V.S. Bhat and A.K. Srivastava, J. Chem. Eng. Data, 46, 1215 (2001); https://doi.org/10.1021/je010097k
A.K. Covington and T. Dickinson, Introduction and Solvent Properties, In: Physical Chemistry of Organic Solvent Systems, Springer, pp. 1-22 (1973); https://doi.org/10.1007/978-1-4684-1959-7_1
D.P. McDermott, J. Phys. Chem., 90, 2569 (1986); https://doi.org/10.1021/j100403a006
W.R. Fawcett, P. Brooksby, D. Verbovy, I. Bakó and G. Pálinkás, J. Mol. Liq., 118, 171 (2005); https://doi.org/10.1016/j.molliq.2004.07.034
M.D. Vedenyapina, T.L. Kulova, Y.O. Kudryashova, A.M. Skundin, O.R. Malyshev and L.M. Glukhov, Russian J. Phys. Chem. A, 94, 1276 (2020); https://doi.org/10.1134/S0036024420060308
A. Sarkar, D. Mishra and B. Sinha, Indian J. Adv. Chem. Sci., 4, 180 (2016)