Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
4f-4f Transition Spectra of the Interaction of Pr(III) with L-Valine in Solution: Kinetics and Thermodynamic Studies
Corresponding Author(s) : M.I. Devi
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The 4f-4f transition spectra for the interaction of L-valine with praseodymium(III) in aqueous organic solvents (50% v/v) of CH3CN, DMF, CH3OH and C4H8O2 is investigated. The variation in the theoretically computed values of the absorption spectral parameters viz. energy interaction parameters-spin-orbit interaction (ξ4f), Slater-Condon (Fk), nephelauxetic ratio (β), Racah energy (Ek), bonding parameter (b1/2) and percentage covalency (δ) explained the nature of complexation. The values of evaluated intensity parameters viz. oscillator strengths (P) and Judd-Ofelt parameters (Ωt) (t = 2, 4, 6) were analyzed to see the possibility of outer and inner sphere coordination of Pr(III) with L-valine. Further, reaction pathways for Pr(III) with L-valine and consequently its thermodynamic parameters have been evaluated through 4f-4f transition spectra in the DMF solvent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Mãciucã, A.C. Munteanu and V. Uivarosi, Molecules, 25, 1347 (2020); https://doi.org/10.3390/molecules25061347
- J.A. Cotruvo Jr., ACS Cent. Sci., 5, 1496 (2019); https://doi.org/10.1021/acscentsci.9b00642
- R.B. Martin and F.S. Richardson, Q. Rev. Biophys., 12, 181 (1979); https://doi.org/10.1017/S0033583500002754
- K.B. Gudasi, V.C. Havanur, S.A. Patil and B.R. Patil, Met. Based Drugs, 2007, 1 (2007); https://doi.org/10.1155/2007/37348
- S. Alghool, M.S. Zoromba and H.F.A. El-Halim, J. Rare Earths, 31, 715 (2013); https://doi.org/10.1016/S1002-0721(12)60347-0
- M.P. Cabral Campello, E. Palma, I. Correia, P.M.R. Paulo, A. Matos, J. Rino, J. Coimbra, J.C. Pessoa, D. Gambino, A. Paulo and F. Marques, Dalton Trans., 48, 4611 (2019); https://doi.org/10.1039/C9DT00640K
- J.V. Kuntal Prajapati, Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 4, 803 (2018); 10.26479/2018.0405.56
- E.M. Stephens, S. Davis, M.F. Reid and F.S. Richardson, Inorg. Chem., 23, 4607 (1984); https://doi.org/10.1021/ic00194a040
- S.N. Misra and M.I. Devi, Biomol. Spectrosc., 53, 1941 (1997); https://doi.org/10.1016/S1386-1425(97)00064-4
- X.M. Qiao, C.X. Zhang, Y.K. Kong and Y.Y. Zhang, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46, 841 (2016); https://doi.org/10.1080/15533174.2014.989594
- S.N. Misra, G. Ramchandriah, M.A. Gagnani, R.S. Shukla and M.I. Devi, Appl. Spectrosc. Rev., 38, 433 (2006); https://doi.org/10.1081/ASR-120026330
- N. Bendangsenla, T. Moaienla, T.D. Singh, C. Sumitra, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
- T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044
- Y. Martínez, X. Li, G. Liu, P. Bin, W. Yan, D. Más, M. Valdivié, C.A.A. Hu, W. Ren and Y. Yin, Amino Acids, 49, 2091 (2017); https://doi.org/10.1007/s00726-017-2494-2
- K.K. Gangu, S. Maddila, S.N. Maddila and S.B. Jonnalagadda, Molecules, 21, 1281 (2016); https://doi.org/10.3390/molecules21101281
- F. Costanzo, R.G. Della Valle and V. Barone, J. Phys. Chem. B, 109, 23016 (2005); https://doi.org/10.1021/jp055271g
- A.L. Sobolewski, D. Shemesh and W. Domcke, J. Phys. Chem. A, 113, 542 (2009); https://doi.org/10.1021/jp8091754
- M.F. Bush, J. Oomens, R.J. Saykally and E.R. Williams, J. Am. Chem. Soc., 130, 6463 (2008); https://doi.org/10.1021/ja711343q
- B.R. Judd, Phys. Rev., 127, 750 (1962); https://doi.org/10.1103/PhysRev.127.750
- G.S. Ofelt, J. Chem. Phys., 37, 511 (1962); https://doi.org/10.1063/1.1701366
- S.N. Misra and S.O. Sommerer, Appl. Spectrosc. Rev., 26, 151 (2006); https://doi.org/10.1080/05704929108050880
- S.P. Sinha, Structure and Bonding in Highly Coordinated Lanthanide Complexes. In: Rare Earths. Structure and Bonding, Springer, Berlin, Heidelberg, vol 25, pp. 69-149 (1977); https://doi.org/10.1007/3-540-07508-9_3
- W.T. Carnall, P.R. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
- M. Ziekhrü, Z. Thakro, C. Imsong, J. Sanchu and M. Indira Devi, Polyhedron, 200, 115099 (2021); https://doi.org/10.1016/j.poly.2021.115099
- J.B. Gruber, G.W. Burdick, S. Chandra and D.K. Sardar, J. Appl. Phys., 108, 023109 (2010); https://doi.org/10.1063/1.3465615
- R.D. Peacock, The Intensities of Lanthanide f-f Transitions, In: Rare Earths. Structure and Bonding, Springer, Berlin, Heidelberg, vol 22 (1975); https://doi.org/10.1007/BFb0116556
- N. Yaiphaba, J. Chem. Pharm. Res., 5, 377 (2013).
- S.N. Misra and K. John, Appl. Spectrosc. Rev., 28, 285 (2006); https://doi.org/10.1080/05704929308018115
- T. Moaienla, N. Bendangsenla and M.I. Devi, Adv. Mater. Sci. Appl., 3, 157 (2014); https://doi.org/10.5963/AMSA0303007
- J. Burgess, Metal Ions in Solution, Ellis Horwood Distributed by Halsted Press, Chichester: New York (1978).
References
A.M. Mãciucã, A.C. Munteanu and V. Uivarosi, Molecules, 25, 1347 (2020); https://doi.org/10.3390/molecules25061347
J.A. Cotruvo Jr., ACS Cent. Sci., 5, 1496 (2019); https://doi.org/10.1021/acscentsci.9b00642
R.B. Martin and F.S. Richardson, Q. Rev. Biophys., 12, 181 (1979); https://doi.org/10.1017/S0033583500002754
K.B. Gudasi, V.C. Havanur, S.A. Patil and B.R. Patil, Met. Based Drugs, 2007, 1 (2007); https://doi.org/10.1155/2007/37348
S. Alghool, M.S. Zoromba and H.F.A. El-Halim, J. Rare Earths, 31, 715 (2013); https://doi.org/10.1016/S1002-0721(12)60347-0
M.P. Cabral Campello, E. Palma, I. Correia, P.M.R. Paulo, A. Matos, J. Rino, J. Coimbra, J.C. Pessoa, D. Gambino, A. Paulo and F. Marques, Dalton Trans., 48, 4611 (2019); https://doi.org/10.1039/C9DT00640K
J.V. Kuntal Prajapati, Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 4, 803 (2018); 10.26479/2018.0405.56
E.M. Stephens, S. Davis, M.F. Reid and F.S. Richardson, Inorg. Chem., 23, 4607 (1984); https://doi.org/10.1021/ic00194a040
S.N. Misra and M.I. Devi, Biomol. Spectrosc., 53, 1941 (1997); https://doi.org/10.1016/S1386-1425(97)00064-4
X.M. Qiao, C.X. Zhang, Y.K. Kong and Y.Y. Zhang, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46, 841 (2016); https://doi.org/10.1080/15533174.2014.989594
S.N. Misra, G. Ramchandriah, M.A. Gagnani, R.S. Shukla and M.I. Devi, Appl. Spectrosc. Rev., 38, 433 (2006); https://doi.org/10.1081/ASR-120026330
N. Bendangsenla, T. Moaienla, T.D. Singh, C. Sumitra, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044
Y. Martínez, X. Li, G. Liu, P. Bin, W. Yan, D. Más, M. Valdivié, C.A.A. Hu, W. Ren and Y. Yin, Amino Acids, 49, 2091 (2017); https://doi.org/10.1007/s00726-017-2494-2
K.K. Gangu, S. Maddila, S.N. Maddila and S.B. Jonnalagadda, Molecules, 21, 1281 (2016); https://doi.org/10.3390/molecules21101281
F. Costanzo, R.G. Della Valle and V. Barone, J. Phys. Chem. B, 109, 23016 (2005); https://doi.org/10.1021/jp055271g
A.L. Sobolewski, D. Shemesh and W. Domcke, J. Phys. Chem. A, 113, 542 (2009); https://doi.org/10.1021/jp8091754
M.F. Bush, J. Oomens, R.J. Saykally and E.R. Williams, J. Am. Chem. Soc., 130, 6463 (2008); https://doi.org/10.1021/ja711343q
B.R. Judd, Phys. Rev., 127, 750 (1962); https://doi.org/10.1103/PhysRev.127.750
G.S. Ofelt, J. Chem. Phys., 37, 511 (1962); https://doi.org/10.1063/1.1701366
S.N. Misra and S.O. Sommerer, Appl. Spectrosc. Rev., 26, 151 (2006); https://doi.org/10.1080/05704929108050880
S.P. Sinha, Structure and Bonding in Highly Coordinated Lanthanide Complexes. In: Rare Earths. Structure and Bonding, Springer, Berlin, Heidelberg, vol 25, pp. 69-149 (1977); https://doi.org/10.1007/3-540-07508-9_3
W.T. Carnall, P.R. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
M. Ziekhrü, Z. Thakro, C. Imsong, J. Sanchu and M. Indira Devi, Polyhedron, 200, 115099 (2021); https://doi.org/10.1016/j.poly.2021.115099
J.B. Gruber, G.W. Burdick, S. Chandra and D.K. Sardar, J. Appl. Phys., 108, 023109 (2010); https://doi.org/10.1063/1.3465615
R.D. Peacock, The Intensities of Lanthanide f-f Transitions, In: Rare Earths. Structure and Bonding, Springer, Berlin, Heidelberg, vol 22 (1975); https://doi.org/10.1007/BFb0116556
N. Yaiphaba, J. Chem. Pharm. Res., 5, 377 (2013).
S.N. Misra and K. John, Appl. Spectrosc. Rev., 28, 285 (2006); https://doi.org/10.1080/05704929308018115
T. Moaienla, N. Bendangsenla and M.I. Devi, Adv. Mater. Sci. Appl., 3, 157 (2014); https://doi.org/10.5963/AMSA0303007
J. Burgess, Metal Ions in Solution, Ellis Horwood Distributed by Halsted Press, Chichester: New York (1978).