Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Marine Sponge Derived Cyclic Peptides for Removal of Mercury
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
This study deals with heavy metal toxicity removal in particular mercury and methyl mercury ions in human. Mercury toxicity in the form of thimerosal used as preservative in vaccines has been linked to autism in children and constitutes an important research topic. This study deals with possible removal of Hg2+ and CH3Hg+ ions from human utilizing marine sponge derived cyclic peptides and their analogs. Ab initio molecular orbital calculations with complete optimization and intermolecular interaction calculations have been utilized for the purpose. A number of marine sponge derived cyclic peptides have been shown to be suitable for non-covalent carriage of mercury ions without premature expulsion probability. Stylissatin and its analogs with enhanced ‘drug–like features’ have been recommended as lead compounds for the development of non-toxic biocompatible drugs for mercury toxicity removal in human. These findings remain to be verified by in vitro or in vivo pharmacological studies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jaishankar, T. Tseten, N. Anbalagan, K.N. Beeregowda and B.B. Mathew, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009.
- L. Fournier, G. Thomas, R. Garnier, A. Buisine, P. Houze, F. Pradier and S. Dally, Med. Toxicol., 3, 499 (1988); https://doi.org/10.1007/BF03259898.
- S.J.S. Flora and V. Pachauri, Int. J. Environ. Res. Public Health, 7, 2745 (2010); https://doi.org/10.3390/ijerph7072745.
- L. Patrick, Altern. Med. Rev., 7, 456 (2002).
- J. Glickeson, Draft Wisconsin Mercury Sourcebook: Agriculture, Minnesota Pollution Control Agency, pp. 161-165 (1996).
- A. Hurley, M. Tadrous and E.S. Miller, J. Pediatr. Pharmacol. Ther., 15, 173 (2010).
- C.H. Nagin, S.C. Foo, K.W. Boey and J. Keyaratnam, Br. J. Ind. Med., 49, 782 (1992).
- N.J. Langford and R.E. Ferner, J. Hum. Hypertens., 13, 651 (1999); https://doi.org/10.1038/sj.jhh.1000896.
- W.W. Thompson, C. Price, B. Goodson, D.K. Shay, P. Benson, V.L. Hinrichsen, E. Lewis, E. Eriksen, P. Ray, S.M. Marcy, J. Dunn, L.A. Jackson, T.A. Lieu, S. Black, G. Stewart, E.S. Weintraub, R.L. Davis and F. DeStefano, N. Engl. J. Med., 357, 1281 (2007); https://doi.org/10.1056/NEJMoa071434.
- C.M.L. Carvalho, E.-H. Chew, S.I. Hashemy, J. Lu and A. Holmgren, J. Biol. Chem., 283, 11913 (2008); https://doi.org/10.1074/jbc.M710133200.
- N. Johns, J. Kurtzman, Z. Shtasel-Gottlieb, S. Rauch and D.I. Wallace, The Bioaccumulation of Methylmercury in an Aquatic Ecosystem, Proceeding of the Annual meeting 2010 of the Society for Mathmatical Biology, Neukom Institute, National Science Foundation Epscer Program, July (2010).
- V. Aposhian, Annu. Rev. Pharmacol. Toxicol., 23, 193 (1983); https://doi.org/10.1146/annurev.pa.23.040183.001205.
- WHO/SDE/WSH/05.08/10, Mercury in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality (2005).
- J. Aaseth, D. Jacobsen, O. Andersen and E. Wickstrom, Analyst, 120, 853 (1995); https://doi.org/10.1039/AN9952000853.
- A. Bilska and L. Wlodek, Pharmacol. Rep., 57, 570 (2005).
- K.P. Shay, R.F. Morean, E.J. Smith, A.R. Smith and T.M. Hagen, Biochim. Biophys. Acta, 1790, 1149 (2009); https://doi.org/10.1016/j.bbagen.2009.07.026.
- J.L. Evans, C.J. Heymann, and L.A. Gavin, Endocr. Pract., 8, 29 (2002); https://doi.org/10.4158/EP.8.1.29.
- S.E. Lee, J.W. Chung, H.S. Won, D.S. Lee and Y.W. Lee, Bull. Environ. Contam. Toxicol., 88, 239 (2012); https://doi.org/10.1007/s00128-011-0501-y.
- W. Aoki and M. Ueda, Pharmaceuticals, 6, 1055 (2013); https://doi.org/10.3390/ph6081055.
- W.J. Stevens, M. Krauss, H. Basch and P.G. Jasien, Can. J. Chem., 70, 612 (1992); https://doi.org/10.1139/v92-085.
- C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17, 49 (1996); https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AIDJCC5>3.0.CO;2-0.
- C. Peng and H. Bernhard Schlegel, Isr. J. Chem., 33, 449 (1993); https://doi.org/10.1002/ijch.199300051.
- Qikprop, version 4.4, Schrodinger, LLC, New York, NY (2015).
- E.M. Duffy and W.L. Jorgensen, J. Am. Chem. Soc., 122, 2878 (2000); https://doi.org/10.1021/ja993663t.
- W.L. Jorgensen and E.M. Duffy, Adv. Drug Deliv. Rev., 54, 355 (2002); https://doi.org/10.1016/S0169-409X(02)00008-X.
- J.M. Luco, J. Chem. Inf. Comput. Sci., 39, 396 (1999); https://doi.org/10.1021/ci980411n.
- A. Randazzo, F. Dal Piaz, S. Orrù, C. Debitus, C. Roussakis, P. Pucci and L. Gomez-Paloma, Eur. J. Org. Chem., 1998, 2659 (1998); https://doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2659::AID-EJOC2659>3.0.CO;2-H.
- G. R. Pettit, F. Gao and R. Cerny, Heterocycles, 35, 711 (1993); https://doi.org/10.3987/COM-93-S(T)137.
- B. Vera, J. Vicente and A.D. Rodríguez, J. Nat. Prod., 72, 1555 (2009); https://doi.org/10.1021/np9004135.
- G.R. Pettit, P.J. Clewlow, C. Dufresne, D.L. Doubek, R.L. Cerny and K. Rutzler, Can. J. Chem., 68, 708 (1990); https://doi.org/10.1139/v90-110.
- G.R. Pettit, Z. Cichacz, J. Barkoczy, A.-C. Dorsaz, D.L. Herald, M.D. Williams, D.L. Doubek, J.M. Schmidt, L.P. Tackett, D.C. Brune, R.L. Cerny, J.N.A. Hooper and G.J. Bakus, J. Nat. Prod., 56, 260 (1993); https://doi.org/10.1021/np50092a011.
- T. Akindele, B. Gise, T. Sunaba, M. Kita and H. Kigoshi, Bull. Chem. Soc. Jpn., 88, 600 (2015); https://doi.org/10.1246/bcsj.20150003.
References
M. Jaishankar, T. Tseten, N. Anbalagan, K.N. Beeregowda and B.B. Mathew, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009.
L. Fournier, G. Thomas, R. Garnier, A. Buisine, P. Houze, F. Pradier and S. Dally, Med. Toxicol., 3, 499 (1988); https://doi.org/10.1007/BF03259898.
S.J.S. Flora and V. Pachauri, Int. J. Environ. Res. Public Health, 7, 2745 (2010); https://doi.org/10.3390/ijerph7072745.
L. Patrick, Altern. Med. Rev., 7, 456 (2002).
J. Glickeson, Draft Wisconsin Mercury Sourcebook: Agriculture, Minnesota Pollution Control Agency, pp. 161-165 (1996).
A. Hurley, M. Tadrous and E.S. Miller, J. Pediatr. Pharmacol. Ther., 15, 173 (2010).
C.H. Nagin, S.C. Foo, K.W. Boey and J. Keyaratnam, Br. J. Ind. Med., 49, 782 (1992).
N.J. Langford and R.E. Ferner, J. Hum. Hypertens., 13, 651 (1999); https://doi.org/10.1038/sj.jhh.1000896.
W.W. Thompson, C. Price, B. Goodson, D.K. Shay, P. Benson, V.L. Hinrichsen, E. Lewis, E. Eriksen, P. Ray, S.M. Marcy, J. Dunn, L.A. Jackson, T.A. Lieu, S. Black, G. Stewart, E.S. Weintraub, R.L. Davis and F. DeStefano, N. Engl. J. Med., 357, 1281 (2007); https://doi.org/10.1056/NEJMoa071434.
C.M.L. Carvalho, E.-H. Chew, S.I. Hashemy, J. Lu and A. Holmgren, J. Biol. Chem., 283, 11913 (2008); https://doi.org/10.1074/jbc.M710133200.
N. Johns, J. Kurtzman, Z. Shtasel-Gottlieb, S. Rauch and D.I. Wallace, The Bioaccumulation of Methylmercury in an Aquatic Ecosystem, Proceeding of the Annual meeting 2010 of the Society for Mathmatical Biology, Neukom Institute, National Science Foundation Epscer Program, July (2010).
V. Aposhian, Annu. Rev. Pharmacol. Toxicol., 23, 193 (1983); https://doi.org/10.1146/annurev.pa.23.040183.001205.
WHO/SDE/WSH/05.08/10, Mercury in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality (2005).
J. Aaseth, D. Jacobsen, O. Andersen and E. Wickstrom, Analyst, 120, 853 (1995); https://doi.org/10.1039/AN9952000853.
A. Bilska and L. Wlodek, Pharmacol. Rep., 57, 570 (2005).
K.P. Shay, R.F. Morean, E.J. Smith, A.R. Smith and T.M. Hagen, Biochim. Biophys. Acta, 1790, 1149 (2009); https://doi.org/10.1016/j.bbagen.2009.07.026.
J.L. Evans, C.J. Heymann, and L.A. Gavin, Endocr. Pract., 8, 29 (2002); https://doi.org/10.4158/EP.8.1.29.
S.E. Lee, J.W. Chung, H.S. Won, D.S. Lee and Y.W. Lee, Bull. Environ. Contam. Toxicol., 88, 239 (2012); https://doi.org/10.1007/s00128-011-0501-y.
W. Aoki and M. Ueda, Pharmaceuticals, 6, 1055 (2013); https://doi.org/10.3390/ph6081055.
W.J. Stevens, M. Krauss, H. Basch and P.G. Jasien, Can. J. Chem., 70, 612 (1992); https://doi.org/10.1139/v92-085.
C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17, 49 (1996); https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AIDJCC5>3.0.CO;2-0.
C. Peng and H. Bernhard Schlegel, Isr. J. Chem., 33, 449 (1993); https://doi.org/10.1002/ijch.199300051.
Qikprop, version 4.4, Schrodinger, LLC, New York, NY (2015).
E.M. Duffy and W.L. Jorgensen, J. Am. Chem. Soc., 122, 2878 (2000); https://doi.org/10.1021/ja993663t.
W.L. Jorgensen and E.M. Duffy, Adv. Drug Deliv. Rev., 54, 355 (2002); https://doi.org/10.1016/S0169-409X(02)00008-X.
J.M. Luco, J. Chem. Inf. Comput. Sci., 39, 396 (1999); https://doi.org/10.1021/ci980411n.
A. Randazzo, F. Dal Piaz, S. Orrù, C. Debitus, C. Roussakis, P. Pucci and L. Gomez-Paloma, Eur. J. Org. Chem., 1998, 2659 (1998); https://doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2659::AID-EJOC2659>3.0.CO;2-H.
G. R. Pettit, F. Gao and R. Cerny, Heterocycles, 35, 711 (1993); https://doi.org/10.3987/COM-93-S(T)137.
B. Vera, J. Vicente and A.D. Rodríguez, J. Nat. Prod., 72, 1555 (2009); https://doi.org/10.1021/np9004135.
G.R. Pettit, P.J. Clewlow, C. Dufresne, D.L. Doubek, R.L. Cerny and K. Rutzler, Can. J. Chem., 68, 708 (1990); https://doi.org/10.1139/v90-110.
G.R. Pettit, Z. Cichacz, J. Barkoczy, A.-C. Dorsaz, D.L. Herald, M.D. Williams, D.L. Doubek, J.M. Schmidt, L.P. Tackett, D.C. Brune, R.L. Cerny, J.N.A. Hooper and G.J. Bakus, J. Nat. Prod., 56, 260 (1993); https://doi.org/10.1021/np50092a011.
T. Akindele, B. Gise, T. Sunaba, M. Kita and H. Kigoshi, Bull. Chem. Soc. Jpn., 88, 600 (2015); https://doi.org/10.1246/bcsj.20150003.