Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis, Theoretical, Spectroscopic and Molecular Docking Studies of Ruthenium and Zinc Complexes and their Antimycobacterial Study
Corresponding Author(s) : Ashok Kumar Singh
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The six mononuclear complexes of ruthenium and zinc viz. [Ru(bpy)2(HL1)]Cl (ML1), [Ru(bpy)2(HL2)]Cl (ML2), [Ru(bpy)2(HL3)]Cl (ML3), [ZnCl(H2O)HL1]Cl (ML4), [ZnCl(H2O)HL2]Cl (ML5), [ZnCl(H2O)HL3]Cl (ML6); bpy = 2,2′-bipyridyl, HL = substituted thiosemicarbazone: HL1 = Cl, HL2 = OCH3, HL3 = OCH2Ph) were synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis and ESI-MS spectroscopy techniques. The gas phase geometries of all the complexes have been optimized by density functional theory (DFT). The antimycobacterial activity of all the compounds was performed initially at 100 μM concentration, followed by MIC determination studies with compounds, which showed 90% reduction in fluorescence intensity. In addition, molecular docking analysis was performed to know the interactions between complexes and their probable binding sites in penicillin binding protein (PBP2). The 90% reduction in fluorescence intensity of the mycobacterial cultures were observed with HL2, HL3 and ML3. The MIC determination study showed good inhibition of ML3 and HL3 treated cultures even at 25 μM concentration. The potential activity shown by HL3 and ML3 cultures shows to be promising compounds, which may be further optimized for improved antimycobacterial activity. Electronic properties and various reactivity descriptors have been determined theoretically and an attempt has been perform to establish the correlation between biological activity and these parameters for the concerned metal complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Subramanian, R. Mural, S.L. Hoffman, J.C. Venter and S. Broder, Mol. Diagn., 6, 243 (2001); https://doi.org/10.2165/00066982-200106040-00006
- P.S. Kim and S. Swaminathan, J. Int. AIDS Soc., 24, e25698 (2021); https://doi.org/10.1002/jia2.25698
- A. Gómez-Suárez, D.J. Nelson, D.G. Thompson, D.B. Cordes, D. Graham, A.M.Z. Slawin and S.P. Nolan, Beilstein J. Org. Chem., 9, 2216 (2013); https://doi.org/10.3762/bjoc.9.260
- J.M.S. Cardoso, A.M. Galvão, S.I. Guerreiro, J.H. Leitão, A.C. Suarez and M.F.N.N. Carvalho, Dalton Trans., 45, 7114 (2016); https://doi.org/10.1039/C6DT00099A
- M.J. Clarke, F. Zhu and D.R. Frasca, Chem. Rev., 99, 2511 (1999); https://doi.org/10.1021/cr9804238
- T.B. Hadda, M. Akkurt, M.F. Baba, M. Daoudi, B. Bennani, A. Kerbal and Z.H. Chohan, J. Enzyme Inhib. Med. Chem., 24, 457 (2009); https://doi.org/10.1080/14756360802188628
- R.I. Kureshy and N.H. Khan, Polyhedron, 12, 195 (1993); https://doi.org/10.1016/S0277-5387(00)81627-7
- A. Jabloñska-Wawrzycka, P. Rogala, S. Michalkiewicz, M. Hodorowicz and B. Barszcz, Dalton Trans., 42, 6092 (2013); https://doi.org/10.1039/c3dt32214a
- J. Chakravarty and S. Bhattacharya, Polyhedron, 15, 1047 (1996); https://doi.org/10.1016/0277-5387(95)00362-2
- I. Mantasha, M.K. Raza, M. Shahid, A. Ansari, M. Ahmad and I.M. Khan, Appl. Organomet. Chem., 33, 5006 (2019); https://doi.org/10.1002/aoc.5006
- M.N. Ahamad, M. Shahid, A. Ansari, M. Kumar, I.M. Khan, M. Ahmad, R. Rahisuddin and R. Arif, New J. Chem., 43, 7511 (2019); https://doi.org/10.1039/C9NJ00228F
- F. Sama, M. Raizada, M. Ashafaq, M.N. Ahamad, I. Mantasha, K. Iman, M. Shahid, R. Rahisuddin, R. Arif, N.A. Shah and H.A.M. Saleh, J. Mol. Struct., 1176, 283 (2019); https://doi.org/10.1016/j.molstruc.2018.08.081
- I. Mantasha, M. Shahid, M. Ahmad, R. Rahisuddin, R. Arif, S. Tasneem, F. Sama and I.A. Ansari, New J. Chem., 43, 622 (2019); https://doi.org/10.1039/C8NJ04122A
- S.B. Mohamed, T.A. Adlan, N.A. Khalafalla, N.I. Abdalla, Z.S.A. Ali, A. Munir KA, M.M. Hassan and M.-A.B. Elnour, Evol. Bioinform. Online, 15, 1 (2019); https://doi.org/10.1177/1176934319864945
- M.M. Miyachiro, C. Contreras-Martel and A. Dessen, Subcell. Biochem., 93, 273 (2019); https://doi.org/10.1007/978-3-030-28151-9_8
- T.P. Cushnie, N.H. O’Driscoll and A.J. Lamb, Cell. Mol. Life Sci., 73, 4471 (2016); https://doi.org/10.1007/s00018-016-2302-2
- M. Nguyen-Distèche, M. Leyh-Bouille and J.M. Ghuysen, Biochem. J., 207, 109 (1982); https://doi.org/10.1042/bj2070109
- H.F. Chambers, J. Infect. Dis., 179(s2), S353 (1999); https://doi.org/10.1086/513854
- W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157, 200 (1989); https://doi.org/10.1016/0009-2614(89)87234-3
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
- W.R. Wadt and P.J. Hay, J. Chem. Phys., 82, 284 (1985); https://doi.org/10.1063/1.448800
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975
- M.J. Frisch, G. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, Benedetta, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada and D. Fox, Gaussian 09 Revision A.1. Gaussian Inc. (2009).
- A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); https://doi.org/10.1021/jp960976r
- P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005
- Æ. Frisch, H.P. Hratchian, R.D. Dennington II, T.A. Keith, J. Millam, A.B. Nielsen, A.J. Holder and J. Hiscocks, GaussView version 5.0, Gaussian, Inc. (2009).
- M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program Warsaw: Poland (2004).
- A.D. Buckingham, Adv. Chem. Phys., 12, 107 (1967); https://doi.org/10.1351/pac198052102253
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- L. Schrödinger, The PyMOL Molecular Graphics System (2010).
- E. Pahontu, M. Proks, S. Shova, G. Lupascu, D.-C. Ilies, S.-F. Bãrbuceanu, L.-I. Socea, M. Badea, V. Pãunescu, D. Istrati, A. Gulea, D. Drãgãnescu and C.E.D. Pîrvu, Appl. Organomet. Chem., 33, 5185 (2019); https://doi.org/10.1002/aoc.5185
- J.C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings and F. Portaels, Antimicrob. Agents Chemother., 46, 2720 (2002); https://doi.org/10.1128/AAC.46.8.2720-2722.2002
- J.C. Palomino, A. Martin and F. Portaels, J. Clin. Microbiol., 8, 754 (2007); https://doi.org/10.1111/j.1469-0691.2007.01698.x
- M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
- B. Ghosh, P. Adak, S. Naskar, B. Pakhira, P. Mitra, R. Dinda and S.K. Chattopadhyay, Inorg. Chim. Acta, 459, 1 (2017); https://doi.org/10.1016/j.ica.2017.01.011
- M. Maganarin, A. Bergamo, M.E. Carotenuto, S. Zorzet and G. Sava, Anticancer Res., 20(5A), 2939 (2000).
- M. Cocchietto and G. Sava, Pharmacol. Toxicol., 87, 193 (2000); https://doi.org/10.1034/j.1600-0773.2000.d01-73.x
- S. Zorzet, A. Sorc, C. Casarsa, M. Cocchietto and G. Sava, Met. Based Drugs, 8, 1 (2001); https://doi.org/10.1155/MBD.2001.1
- J.G. Da Silva, C.C.H. Perdigão, N.L. Speziali and H. Beraldo, J. Coord. Chem., 66, 385 (2013); https://doi.org/10.1080/00958972.2012.757762
- R. Gagliardi, G. Sava, S. Pacor, G. Mestroni and E. Alessio, Clin. Exp. Metast., 12, 93 (1994); https://doi.org/10.1007/BF01753975
- V. Krishnakumar and S. Seshadri, Spectrochim. Acta A, 68, 833 (2007); https://doi.org/10.1016/j.saa.2006.12.067
- S. Goel, O.P. Pandey and K. Sengupta, Thermochim. Acta, 133, 359 (1988); https://doi.org/10.1016/0040-6031(88)87183-1
- P.F. Rapheal, E. Manoj and M.R. Prathapachandra Kurup, Polyhedron, 26, 818 (2007); https://doi.org/10.1016/j.poly.2006.09.091
- I.D. Kostas, F.J. Andreadaki, D. Kovala-Demertzi, Christos Prentjas and M.A. Demertzis, Tetrahedron Lett., 46, 1967 (2005); https://doi.org/10.1016/j.tetlet.2005.02.003
- R.K. Singh and A.K. Singh, J. Mol. Struct., 1129, 128 (2017); https://doi.org/10.1016/j.molstruc.2016.09.072
- C.A.S.T. Vilanova-Costa, H.K.P. Porto, F.C. Pereira, A.P. de Lima, W.B. dos Santos and E.P. Silveira-Lacerda, Biometals, 27, 459 (2014); https://doi.org/10.1007/s10534-014-9715-x
- U.K. Mazumder, M. Gupta, S.S. Karki, S. Bhattacharya, S. Rathinasamy and S. Thangavel, Chem. Pharm. Bull., 52, 178 (2004); https://doi.org/10.1248/cpb.52.178
- A.K. Singh, R.K. Singh, M. Arshad and S.K. Sahabzada, ChemistrySelect, 3, 12682 (2018); https://doi.org/10.1002/slct.201802929
- H. Sklenar and J. Jager, Int. J. Quantum Chem., 16, 467 (1979); https://doi.org/10.1002/qua.560160306
- R.G. Parr and W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
- R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
- T.H. Al-Noor, R.K. Mohapatra, L.K.A. Karem, P.K. Mohapatra, M. Azam, A.A. Ibrahim, P.K. Parhi, G.C. Dash, M.M. El-Ajaily, S.I. AlResayes, M.K. Raval and L. Pintilie, J. Mol. Struct., 1229, 129832 (2021); https://doi.org/10.1016/j.molstruc.2020.129832
- J.M. Ghuysen, Trends Microbiol., 2, 372 (1994); https://doi.org/10.1016/0966-842X(94)90614-9
- J.M. Ghuysen, Annu. Rev. Microbiol., 45, 37 (1991); https://doi.org/10.1146/annurev.mi.45.100191.000345
- P. Macheboeuf, C. Contreras-Martel, V. Job, O. Dideberg and A. Dessen, FEMS Microbiol. Rev., 30, 673 (2006); https://doi.org/10.1111/j.1574-6976.2006.00024.x
References
G. Subramanian, R. Mural, S.L. Hoffman, J.C. Venter and S. Broder, Mol. Diagn., 6, 243 (2001); https://doi.org/10.2165/00066982-200106040-00006
P.S. Kim and S. Swaminathan, J. Int. AIDS Soc., 24, e25698 (2021); https://doi.org/10.1002/jia2.25698
A. Gómez-Suárez, D.J. Nelson, D.G. Thompson, D.B. Cordes, D. Graham, A.M.Z. Slawin and S.P. Nolan, Beilstein J. Org. Chem., 9, 2216 (2013); https://doi.org/10.3762/bjoc.9.260
J.M.S. Cardoso, A.M. Galvão, S.I. Guerreiro, J.H. Leitão, A.C. Suarez and M.F.N.N. Carvalho, Dalton Trans., 45, 7114 (2016); https://doi.org/10.1039/C6DT00099A
M.J. Clarke, F. Zhu and D.R. Frasca, Chem. Rev., 99, 2511 (1999); https://doi.org/10.1021/cr9804238
T.B. Hadda, M. Akkurt, M.F. Baba, M. Daoudi, B. Bennani, A. Kerbal and Z.H. Chohan, J. Enzyme Inhib. Med. Chem., 24, 457 (2009); https://doi.org/10.1080/14756360802188628
R.I. Kureshy and N.H. Khan, Polyhedron, 12, 195 (1993); https://doi.org/10.1016/S0277-5387(00)81627-7
A. Jabloñska-Wawrzycka, P. Rogala, S. Michalkiewicz, M. Hodorowicz and B. Barszcz, Dalton Trans., 42, 6092 (2013); https://doi.org/10.1039/c3dt32214a
J. Chakravarty and S. Bhattacharya, Polyhedron, 15, 1047 (1996); https://doi.org/10.1016/0277-5387(95)00362-2
I. Mantasha, M.K. Raza, M. Shahid, A. Ansari, M. Ahmad and I.M. Khan, Appl. Organomet. Chem., 33, 5006 (2019); https://doi.org/10.1002/aoc.5006
M.N. Ahamad, M. Shahid, A. Ansari, M. Kumar, I.M. Khan, M. Ahmad, R. Rahisuddin and R. Arif, New J. Chem., 43, 7511 (2019); https://doi.org/10.1039/C9NJ00228F
F. Sama, M. Raizada, M. Ashafaq, M.N. Ahamad, I. Mantasha, K. Iman, M. Shahid, R. Rahisuddin, R. Arif, N.A. Shah and H.A.M. Saleh, J. Mol. Struct., 1176, 283 (2019); https://doi.org/10.1016/j.molstruc.2018.08.081
I. Mantasha, M. Shahid, M. Ahmad, R. Rahisuddin, R. Arif, S. Tasneem, F. Sama and I.A. Ansari, New J. Chem., 43, 622 (2019); https://doi.org/10.1039/C8NJ04122A
S.B. Mohamed, T.A. Adlan, N.A. Khalafalla, N.I. Abdalla, Z.S.A. Ali, A. Munir KA, M.M. Hassan and M.-A.B. Elnour, Evol. Bioinform. Online, 15, 1 (2019); https://doi.org/10.1177/1176934319864945
M.M. Miyachiro, C. Contreras-Martel and A. Dessen, Subcell. Biochem., 93, 273 (2019); https://doi.org/10.1007/978-3-030-28151-9_8
T.P. Cushnie, N.H. O’Driscoll and A.J. Lamb, Cell. Mol. Life Sci., 73, 4471 (2016); https://doi.org/10.1007/s00018-016-2302-2
M. Nguyen-Distèche, M. Leyh-Bouille and J.M. Ghuysen, Biochem. J., 207, 109 (1982); https://doi.org/10.1042/bj2070109
H.F. Chambers, J. Infect. Dis., 179(s2), S353 (1999); https://doi.org/10.1086/513854
W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157, 200 (1989); https://doi.org/10.1016/0009-2614(89)87234-3
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
W.R. Wadt and P.J. Hay, J. Chem. Phys., 82, 284 (1985); https://doi.org/10.1063/1.448800
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975
M.J. Frisch, G. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, Benedetta, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada and D. Fox, Gaussian 09 Revision A.1. Gaussian Inc. (2009).
A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); https://doi.org/10.1021/jp960976r
P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005
Æ. Frisch, H.P. Hratchian, R.D. Dennington II, T.A. Keith, J. Millam, A.B. Nielsen, A.J. Holder and J. Hiscocks, GaussView version 5.0, Gaussian, Inc. (2009).
M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program Warsaw: Poland (2004).
A.D. Buckingham, Adv. Chem. Phys., 12, 107 (1967); https://doi.org/10.1351/pac198052102253
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov and P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
L. Schrödinger, The PyMOL Molecular Graphics System (2010).
E. Pahontu, M. Proks, S. Shova, G. Lupascu, D.-C. Ilies, S.-F. Bãrbuceanu, L.-I. Socea, M. Badea, V. Pãunescu, D. Istrati, A. Gulea, D. Drãgãnescu and C.E.D. Pîrvu, Appl. Organomet. Chem., 33, 5185 (2019); https://doi.org/10.1002/aoc.5185
J.C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings and F. Portaels, Antimicrob. Agents Chemother., 46, 2720 (2002); https://doi.org/10.1128/AAC.46.8.2720-2722.2002
J.C. Palomino, A. Martin and F. Portaels, J. Clin. Microbiol., 8, 754 (2007); https://doi.org/10.1111/j.1469-0691.2007.01698.x
M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
B. Ghosh, P. Adak, S. Naskar, B. Pakhira, P. Mitra, R. Dinda and S.K. Chattopadhyay, Inorg. Chim. Acta, 459, 1 (2017); https://doi.org/10.1016/j.ica.2017.01.011
M. Maganarin, A. Bergamo, M.E. Carotenuto, S. Zorzet and G. Sava, Anticancer Res., 20(5A), 2939 (2000).
M. Cocchietto and G. Sava, Pharmacol. Toxicol., 87, 193 (2000); https://doi.org/10.1034/j.1600-0773.2000.d01-73.x
S. Zorzet, A. Sorc, C. Casarsa, M. Cocchietto and G. Sava, Met. Based Drugs, 8, 1 (2001); https://doi.org/10.1155/MBD.2001.1
J.G. Da Silva, C.C.H. Perdigão, N.L. Speziali and H. Beraldo, J. Coord. Chem., 66, 385 (2013); https://doi.org/10.1080/00958972.2012.757762
R. Gagliardi, G. Sava, S. Pacor, G. Mestroni and E. Alessio, Clin. Exp. Metast., 12, 93 (1994); https://doi.org/10.1007/BF01753975
V. Krishnakumar and S. Seshadri, Spectrochim. Acta A, 68, 833 (2007); https://doi.org/10.1016/j.saa.2006.12.067
S. Goel, O.P. Pandey and K. Sengupta, Thermochim. Acta, 133, 359 (1988); https://doi.org/10.1016/0040-6031(88)87183-1
P.F. Rapheal, E. Manoj and M.R. Prathapachandra Kurup, Polyhedron, 26, 818 (2007); https://doi.org/10.1016/j.poly.2006.09.091
I.D. Kostas, F.J. Andreadaki, D. Kovala-Demertzi, Christos Prentjas and M.A. Demertzis, Tetrahedron Lett., 46, 1967 (2005); https://doi.org/10.1016/j.tetlet.2005.02.003
R.K. Singh and A.K. Singh, J. Mol. Struct., 1129, 128 (2017); https://doi.org/10.1016/j.molstruc.2016.09.072
C.A.S.T. Vilanova-Costa, H.K.P. Porto, F.C. Pereira, A.P. de Lima, W.B. dos Santos and E.P. Silveira-Lacerda, Biometals, 27, 459 (2014); https://doi.org/10.1007/s10534-014-9715-x
U.K. Mazumder, M. Gupta, S.S. Karki, S. Bhattacharya, S. Rathinasamy and S. Thangavel, Chem. Pharm. Bull., 52, 178 (2004); https://doi.org/10.1248/cpb.52.178
A.K. Singh, R.K. Singh, M. Arshad and S.K. Sahabzada, ChemistrySelect, 3, 12682 (2018); https://doi.org/10.1002/slct.201802929
H. Sklenar and J. Jager, Int. J. Quantum Chem., 16, 467 (1979); https://doi.org/10.1002/qua.560160306
R.G. Parr and W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
T.H. Al-Noor, R.K. Mohapatra, L.K.A. Karem, P.K. Mohapatra, M. Azam, A.A. Ibrahim, P.K. Parhi, G.C. Dash, M.M. El-Ajaily, S.I. AlResayes, M.K. Raval and L. Pintilie, J. Mol. Struct., 1229, 129832 (2021); https://doi.org/10.1016/j.molstruc.2020.129832
J.M. Ghuysen, Trends Microbiol., 2, 372 (1994); https://doi.org/10.1016/0966-842X(94)90614-9
J.M. Ghuysen, Annu. Rev. Microbiol., 45, 37 (1991); https://doi.org/10.1146/annurev.mi.45.100191.000345
P. Macheboeuf, C. Contreras-Martel, V. Job, O. Dideberg and A. Dessen, FEMS Microbiol. Rev., 30, 673 (2006); https://doi.org/10.1111/j.1574-6976.2006.00024.x