Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
In silico Molecular Docking, ADMET Property, Molecular Dynamic Simulation Evaluation of N,N′-bis(2-Hydroxybenzylidene)-1,2-diaminobenzene and its Metal Complexes against SARS-CoV-2
Corresponding Author(s) : S. Anbuselvi
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
In search of potent inhibitors of SARS-CoV-2, well familiar N,N′-bis(2-hydroxybenzylidene)-1,2-diaminobenzene [HBDB]/salophen ligand and its corresponding metal complexes such as [VO(HBDB)], [Mo(O)2(HBDB)], [W(O)2(HBDB)], [Fe(H2O)2(HBDB)], [Pb(H2O)2(HBDB)], [Sn(Cl)2(HBDB)] have been accompanied with standard drug hydroxychloroquine employing CADD tools such as the molecular docking, ADMET toxicity assessment and molecular dynamics of the coronavirus main protease (PDB id: 6LZG) enzyme. The synthesized salophen metal complexes exhibited the greater binding energy than corresponding salophen Schiff base ligand and standard hydroxychloroquine drug. Consequently, salophen metal complexes could serve as potential lead molecules against COVID-19 for further optimization and drug development to combat the virulent SARS-CoV-2 syndrome. The molecular dynamic simulation studies for [Mo(O2)(HBDB)] complex shows an excellent binding free energy about -170.833 Kcal/mol. Subsequently, it is confirmed that salophen metal complexes could serve as potential drugs against COVID-19 for further optimization and drug development to combat the virulent SARS-CoV-2 syndrome.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Nicola, Z. Alsafi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis, M. Agha and R. Agha, Int. J. Surg., 78, 185 (2020); https://doi.org/10.1016/j.ijsu.2020.04.018
- S.K.P. Lau, P.C.Y. Woo, K.S.M. Li, Y. Huang, H.W. Tsoi, B.H.L. Wong, S.S.Y. Wong, S.Y. Leung, K.H. Chan and K.Y. Yuen, Proc. Natl. Acad. Sci. USA, 102, 14040 (2005); https://doi.org/10.1073/pnas.0506735102
- J. Zheng, Int. J. Biol. Sci., 16, 1678 (2020); https://doi.org/10.7150/ijbs.45053
- S. Rajpoot, M. Alagumuthu and M.S. Baig, Curr. Res. Struct. Biol., 3, 9 (2021); https://doi.org/10.1016/j.crstbi.2020.12.001
- M.M. Ghahremanpour, J. Tirado-Rives, M. Deshmukh, J.A. Ippolito, C.-H. Zhang, I. Cabeza de Vaca, M.-E. Liosi, K.S. Anderson and W.L. Jorgensen, ACS Med. Chem. Lett., 11, 2526 (2020); https://doi.org/10.1021/acsmedchemlett.0c00521
- M.F. Bashir, B. Ma and L. Shahzad, Air Qual. Atmos. Health, 13, 1403 (2020); https://doi.org/10.1007/s11869-020-00894-8
- J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo, M. Soultsioti and A. Zevini, Cytokine Growth Factor Rev., 53, 1 (2020); https://doi.org/10.1016/j.cytogfr.2020.05.010
- Z. Luo, M.Y.J. Ang, S.Y. Chan, Z. Yi, Y.Y. Goh, S. Yan, J. Tao, K. Liu, X. Li, H. Zhang, W. Huang and X. Liu, Research, 2020, 6925296 (2020); https://doi.org/10.34133/2020/6925296
- S. Keretsu, S.P. Bhujbal and S.J. Cho, Sci. Rep., 10, 17716 (2020); https://doi.org/10.1038/s41598-020-74468-0
- A.K. Singh, A. Singh, A. Shaikh, R. Singh and A. Misra, Diabetes Metab. Syndr., 14, 241 (2020); https://doi.org/10.1016/j.dsx.2020.03.011
- J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Cell Discov., 6, 16 (2020); https://doi.org/10.1038/s41421-020-0156-0
- S. Jiang, L. Du and Z. Shi, Emerg. Microbes Infect., 9, 275 (2020); https://doi.org/10.1080/22221751.2020.1723441
- A.M.A. Adam, M.S. Refat, T.A. Altalhi and K.S. Alsuhaibani, J. Mol. Liq., 340, 117224 (2021); https://doi.org/10.1016/j.molliq.2021.117224
- K. Mohamed, N. Yazdanpanah, A. Saghazadeh and N. Rezaei, Bioorg. Chem., 106, 104490 (2021); https://doi.org/10.1016/j.bioorg.2020.104490
- I. de A. Santos, V.R. Grosche, F.R.G. Bergamini, R. Sabino-Silva and A.C.G. Jardim, Front. Microbiol., 11, 1818 (2020); https://doi.org/10.3389/fmicb.2020.01818
- N.C. Kyriakidis, A. López-Cortés, E.V. González, A.B. Grimaldos and E.O. Prado, NPJ Vaccines, 6, 28 (2021); https://doi.org/10.1038/s41541-021-00292-w
- C. Menni, K. Klaser, A. May, L. Polidori, J. Capdevila, P. Louca, C.H. Sudre, L.H. Nguyen, D.A. Drew, J. Merino, S. Selvachandran, M. Antonelli, C. Hu, B. Murray, L.S. Canas, E. Molteni, M.S. Graham, M. Modat, A.D. Joshi, M. Mangino, A. Hammers, A.L. Goodman, A.T. Chan, J. Wolf, C.J. Steves, A.M. Valdes, S. Ourselin and T.D. Spector, Lancet Infect. Dis., 21, 939 (2021); https://doi.org/10.1016/S1473-3099(21)00224-3
- R.T. Eastman, J.S. Roth, K.R. Brimacombe, A. Simeonov, M. Shen, S. Patnaik and M.D. Hall, ACS Cent. Sci., 6, 672 (2020); https://doi.org/10.1021/acscentsci.0c00489
- Q. Fan and B. Zhang, Biomed. Pharmacother., 130, 110532 (2020); https://doi.org/10.1016/j.biopha.2020.110532
- E.N. Mingazova and S.A. Gureev, Probl. Sotsialnoi Gig. Istor. Med., 29(Special Issue), 593 (2021); https://doi.org/10.32687/0869-866X-2021-29-s1-593-597
- S. Trevino, A. Diaz, E. Sanchez-Lara, B.L. Sanchez-Gaytan, J.M. PerezAguilar and E. Gonzalez-Vergara, Biol. Trace Elem. Res., 188, 68 (2019); https://doi.org/10.1007/s12011-018-1540-6
- T.O. Aiyelabola, D.P. Otto, J.H.L. Jordaan, E.O. Akinkunmi and I. Olawuni, Adv. Biol. Chem., 11, 107177 (2021); https://doi.org/10.4236/abc.2021.111004
- M. Martinot, A. Jary, S. Fafi-Kremer, V. Leducq, H. Delagreverie, M. Garnier, J. Pacanowski, A. Mékinian, F. Pirenne, P. Tiberghien, V. Calvez, C. Humbrecht, A.-G. Marcelin and K. Lacombe, Clin. Infect. Dis., 73, e1762 (2020); https://doi.org/10.1093/cid/ciaa1474
- A.S. Rifaioglu, H. Atas, M.J. Martin, R. Cetin-Atalay, V. Atalay and T. Dogan, Brief. Bioinform., 20, 1878 (2019); https://doi.org/10.1093/bib/bby061
- A. Dalla Cort, P. De Bernardin, G. Forte and F.Y. Mihan, Chem. Soc. Rev., 39, 3863 (2010); https://doi.org/10.1039/b926222a
- Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang, Nature, 582, 289 (2020); https://doi.org/10.1038/s41586-020-2223-y
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. lson, SDRP J. Comput. Chem. Mol. Model., 16, 2785 (2009).
- J.D. Durrant and J.A. McCammon, BMC Biol., 9, 71 (2011); https://doi.org/10.1186/1741-7007-9-71
- A. Hospital, J.R. Goñi, M. Orozco and J.L. Gelpí, Adv. Appl. Bioinform. Chem., 8, 37 (2015); https://doi.org/10.2147/AABC.S70333
- D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, J. Comput. Chem., 26, 1668 (2005); https://doi.org/10.1002/jcc.20290
- R.G. Susnow and S.L. Dixon, J. Chem. Inf. Comput. Sci., 43, 1308 (2003); https://doi.org/10.1021/ci030283p
References
M. Nicola, Z. Alsafi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis, M. Agha and R. Agha, Int. J. Surg., 78, 185 (2020); https://doi.org/10.1016/j.ijsu.2020.04.018
S.K.P. Lau, P.C.Y. Woo, K.S.M. Li, Y. Huang, H.W. Tsoi, B.H.L. Wong, S.S.Y. Wong, S.Y. Leung, K.H. Chan and K.Y. Yuen, Proc. Natl. Acad. Sci. USA, 102, 14040 (2005); https://doi.org/10.1073/pnas.0506735102
J. Zheng, Int. J. Biol. Sci., 16, 1678 (2020); https://doi.org/10.7150/ijbs.45053
S. Rajpoot, M. Alagumuthu and M.S. Baig, Curr. Res. Struct. Biol., 3, 9 (2021); https://doi.org/10.1016/j.crstbi.2020.12.001
M.M. Ghahremanpour, J. Tirado-Rives, M. Deshmukh, J.A. Ippolito, C.-H. Zhang, I. Cabeza de Vaca, M.-E. Liosi, K.S. Anderson and W.L. Jorgensen, ACS Med. Chem. Lett., 11, 2526 (2020); https://doi.org/10.1021/acsmedchemlett.0c00521
M.F. Bashir, B. Ma and L. Shahzad, Air Qual. Atmos. Health, 13, 1403 (2020); https://doi.org/10.1007/s11869-020-00894-8
J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo, M. Soultsioti and A. Zevini, Cytokine Growth Factor Rev., 53, 1 (2020); https://doi.org/10.1016/j.cytogfr.2020.05.010
Z. Luo, M.Y.J. Ang, S.Y. Chan, Z. Yi, Y.Y. Goh, S. Yan, J. Tao, K. Liu, X. Li, H. Zhang, W. Huang and X. Liu, Research, 2020, 6925296 (2020); https://doi.org/10.34133/2020/6925296
S. Keretsu, S.P. Bhujbal and S.J. Cho, Sci. Rep., 10, 17716 (2020); https://doi.org/10.1038/s41598-020-74468-0
A.K. Singh, A. Singh, A. Shaikh, R. Singh and A. Misra, Diabetes Metab. Syndr., 14, 241 (2020); https://doi.org/10.1016/j.dsx.2020.03.011
J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Cell Discov., 6, 16 (2020); https://doi.org/10.1038/s41421-020-0156-0
S. Jiang, L. Du and Z. Shi, Emerg. Microbes Infect., 9, 275 (2020); https://doi.org/10.1080/22221751.2020.1723441
A.M.A. Adam, M.S. Refat, T.A. Altalhi and K.S. Alsuhaibani, J. Mol. Liq., 340, 117224 (2021); https://doi.org/10.1016/j.molliq.2021.117224
K. Mohamed, N. Yazdanpanah, A. Saghazadeh and N. Rezaei, Bioorg. Chem., 106, 104490 (2021); https://doi.org/10.1016/j.bioorg.2020.104490
I. de A. Santos, V.R. Grosche, F.R.G. Bergamini, R. Sabino-Silva and A.C.G. Jardim, Front. Microbiol., 11, 1818 (2020); https://doi.org/10.3389/fmicb.2020.01818
N.C. Kyriakidis, A. López-Cortés, E.V. González, A.B. Grimaldos and E.O. Prado, NPJ Vaccines, 6, 28 (2021); https://doi.org/10.1038/s41541-021-00292-w
C. Menni, K. Klaser, A. May, L. Polidori, J. Capdevila, P. Louca, C.H. Sudre, L.H. Nguyen, D.A. Drew, J. Merino, S. Selvachandran, M. Antonelli, C. Hu, B. Murray, L.S. Canas, E. Molteni, M.S. Graham, M. Modat, A.D. Joshi, M. Mangino, A. Hammers, A.L. Goodman, A.T. Chan, J. Wolf, C.J. Steves, A.M. Valdes, S. Ourselin and T.D. Spector, Lancet Infect. Dis., 21, 939 (2021); https://doi.org/10.1016/S1473-3099(21)00224-3
R.T. Eastman, J.S. Roth, K.R. Brimacombe, A. Simeonov, M. Shen, S. Patnaik and M.D. Hall, ACS Cent. Sci., 6, 672 (2020); https://doi.org/10.1021/acscentsci.0c00489
Q. Fan and B. Zhang, Biomed. Pharmacother., 130, 110532 (2020); https://doi.org/10.1016/j.biopha.2020.110532
E.N. Mingazova and S.A. Gureev, Probl. Sotsialnoi Gig. Istor. Med., 29(Special Issue), 593 (2021); https://doi.org/10.32687/0869-866X-2021-29-s1-593-597
S. Trevino, A. Diaz, E. Sanchez-Lara, B.L. Sanchez-Gaytan, J.M. PerezAguilar and E. Gonzalez-Vergara, Biol. Trace Elem. Res., 188, 68 (2019); https://doi.org/10.1007/s12011-018-1540-6
T.O. Aiyelabola, D.P. Otto, J.H.L. Jordaan, E.O. Akinkunmi and I. Olawuni, Adv. Biol. Chem., 11, 107177 (2021); https://doi.org/10.4236/abc.2021.111004
M. Martinot, A. Jary, S. Fafi-Kremer, V. Leducq, H. Delagreverie, M. Garnier, J. Pacanowski, A. Mékinian, F. Pirenne, P. Tiberghien, V. Calvez, C. Humbrecht, A.-G. Marcelin and K. Lacombe, Clin. Infect. Dis., 73, e1762 (2020); https://doi.org/10.1093/cid/ciaa1474
A.S. Rifaioglu, H. Atas, M.J. Martin, R. Cetin-Atalay, V. Atalay and T. Dogan, Brief. Bioinform., 20, 1878 (2019); https://doi.org/10.1093/bib/bby061
A. Dalla Cort, P. De Bernardin, G. Forte and F.Y. Mihan, Chem. Soc. Rev., 39, 3863 (2010); https://doi.org/10.1039/b926222a
Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang, Nature, 582, 289 (2020); https://doi.org/10.1038/s41586-020-2223-y
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. lson, SDRP J. Comput. Chem. Mol. Model., 16, 2785 (2009).
J.D. Durrant and J.A. McCammon, BMC Biol., 9, 71 (2011); https://doi.org/10.1186/1741-7007-9-71
A. Hospital, J.R. Goñi, M. Orozco and J.L. Gelpí, Adv. Appl. Bioinform. Chem., 8, 37 (2015); https://doi.org/10.2147/AABC.S70333
D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, J. Comput. Chem., 26, 1668 (2005); https://doi.org/10.1002/jcc.20290
R.G. Susnow and S.L. Dixon, J. Chem. Inf. Comput. Sci., 43, 1308 (2003); https://doi.org/10.1021/ci030283p