Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Comparative Analysis of Impact of Hexane, Diethyl Ether, Toluene and Acetone on Biodiesel Transesterification Process
Corresponding Author(s) : Udara S.P.R. Arachchige
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The aim of this study was to examine the production of biodiesel from waste cooking oil with an acid value of 1.82 mg KOH/g in the presence of methanol and KOH, utilizing cosolvent technology in order to increase biodiesel output by overcoming mass transfer resistance. This study examined the effect of four cosolvents (hexane, diethyl ether, toluene and acetone) on biodiesel yield under optimized reaction conditions, including cosolvent-to-oil weight ratio, reaction time and temperature. The polarity index of cosolvent was determined primarily on its biodiesel yield performance. Highest yield (98.46%) of biodiesel was obtained at 20 wt.% of acetone; 1:6 molar ratio (oil-to-methanol), 1 wt.% KOH at 40 ± 1 ºC for 10 min of reaction time at 600 rpm. The physico-chemical properties of biodiesel such as acid value, density, kinematic viscosity and flash point were evaluated and found to be within ASTM standards.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.K. Ghosh and B.K. Ghosh, Global J. Eng. Sci., 5, 1 (2020); https://doi.org/10.33552/GJES.2020.05.000606
- F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2017); https://doi.org/10.3390/ijerph15010016
- J. Kotcher, E. Maibach and W. Choi, BMC Public Health, 19, 1079 (2019); https://doi.org/10.1186/s12889-019-7373-1
- C.D.M.O. Ranaraja, Int. J. Scient. Technol. Res., 8, 417 (2019).
- D. Thilakarathne, U.S.P.R. Arachchige, R.A. Jayasinghe, N.A. Weerasekara and K.A.V. Miyuranga, Impact of the Waste Cooking Oil Quality on Biodiesel Production, In: ITUM Research Symposium 2021, Institute of Technology, University of Moratuwa, vol. 8, pp. 97-100 (2021).
- U.S.P.R. Arachchige, Int. J. Scient. Eng. Sci., 5, 1 (2021).
- U.L. Muhammad, Petroleum Sci. Eng., 2, 44 (2018); https://doi.org/10.11648/j.pse.20180201.17
- U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nature Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
- D. Thilakarathne and K.A.V. Miyuranga, Int. J. Scient. Eng. Sci., 5, 28 (2021).
- M. Ramos, A. Dias, J. Puna, J. Gomes and J. Bordado, Energies, 12, 4408 (2019); https://doi.org/10.3390/en12234408
- P. Zeman, V. Hönig, M. Kotek, J. Táborský, M. Obergruber, J. Marík, V. Hartová and M. Pechout, Catalysts, 9, 337 (2019); https://doi.org/10.3390/catal9040337
- B. Thangaraj, P.R. Solomon, B. Muniyandi, S. Ranganathan and L. Lin, Clean Energy, 3, 2 (2019); https://doi.org/10.1093/ce/zky020
- G. Simonelli, J. Ferreira Jr., C. Pires and L. Santos, Res., Soc. Develop., 9, e99911672 (2020); https://doi.org/10.33448/rsd-v9i1.1672
- J. Mwangi, W. Lee, Y. Chang, C. Chen and L. Wang, Appl. Energy, 159, 214 (2015); https://doi.org/10.1016/j.apenergy.2015.08.084
- A. Vyas, J. Verma and N. Subrahmanyam, Fuel, 89, 1 (2010); https://doi.org/10.1016/j.fuel.2009.08.014
- G. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
- S. Lim and K. Lee, Chem. Eng. J., 221, 436 (2013); https://doi.org/10.1016/j.cej.2013.02.014
- G. Guan, N. Sakurai and K. Kusakabe, Chem. Eng. J., 146, 302 (2009); https://doi.org/10.1016/j.cej.2008.10.009
- Y. Alhassan, N. Kumar, I. Bugaje, H. Pali and P. Kathkar, Energy Convers. Manage., 84, 640 (2014); https://doi.org/10.1016/j.enconman.2014.04.080
- S. Mahajan, S. Konar and D. Boocock, J. Am. Oil Chem. Soc., 83, 641 (2006); https://doi.org/10.1007/s11746-006-1251-6
- T. Julianto and R. Nurlestari, IOP Conf. Series Mater. Sci. Eng., 349, 012063 (2018); https://doi.org/10.1088/1757-899X/349/1/012063
- Perry’s Chemical Engineering Handbook, McGraw-Hill, Ed. 7, pp. 732- 2293 (2004).
- M. Hájek, A. Vávra, P. Mach and A. Straková, J. Environ. Manage., 262, 110295 (2020); https://doi.org/10.1016/j.jenvman.2020.110295
- A. Chandrasekaran, C. Kim, S. Venkatram and R. Ramprasad, Macromolecules, 53, 4764 (2020); https://doi.org/10.1021/acs.macromol.0c00251
- T. Muppaneni, H. Reddy, P. Patil, P. Dailey, C. Aday and S. Deng, Appl. Energy, 94, 84 (2012); https://doi.org/10.1016/j.apenergy.2012.01.023
- N. Jomtib, C. Prommuak, M. Goto, M. Sasaki and A. Shotipruk, Eng. J., 15, 49 (2011); https://doi.org/10.4186/ej.2011.15.3.49
- L. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda and H. Bandow, Fuel, 103, 742 (2013); https://doi.org/10.1016/j.fuel.2012.09.029
- M. Lam and K. Lee, Fuel Process. Technol., 110, 242 (2013); https://doi.org/10.1016/j.fuproc.2012.12.021
- L. Wu, K. Huang, T. Wei, Z. Lin, Y. Zou and Z. Tong, Fuel, 186, 597 (2016); https://doi.org/10.1016/j.fuel.2016.08.106
- J. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
- L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065
References
S.K. Ghosh and B.K. Ghosh, Global J. Eng. Sci., 5, 1 (2020); https://doi.org/10.33552/GJES.2020.05.000606
F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2017); https://doi.org/10.3390/ijerph15010016
J. Kotcher, E. Maibach and W. Choi, BMC Public Health, 19, 1079 (2019); https://doi.org/10.1186/s12889-019-7373-1
C.D.M.O. Ranaraja, Int. J. Scient. Technol. Res., 8, 417 (2019).
D. Thilakarathne, U.S.P.R. Arachchige, R.A. Jayasinghe, N.A. Weerasekara and K.A.V. Miyuranga, Impact of the Waste Cooking Oil Quality on Biodiesel Production, In: ITUM Research Symposium 2021, Institute of Technology, University of Moratuwa, vol. 8, pp. 97-100 (2021).
U.S.P.R. Arachchige, Int. J. Scient. Eng. Sci., 5, 1 (2021).
U.L. Muhammad, Petroleum Sci. Eng., 2, 44 (2018); https://doi.org/10.11648/j.pse.20180201.17
U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nature Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
D. Thilakarathne and K.A.V. Miyuranga, Int. J. Scient. Eng. Sci., 5, 28 (2021).
M. Ramos, A. Dias, J. Puna, J. Gomes and J. Bordado, Energies, 12, 4408 (2019); https://doi.org/10.3390/en12234408
P. Zeman, V. Hönig, M. Kotek, J. Táborský, M. Obergruber, J. Marík, V. Hartová and M. Pechout, Catalysts, 9, 337 (2019); https://doi.org/10.3390/catal9040337
B. Thangaraj, P.R. Solomon, B. Muniyandi, S. Ranganathan and L. Lin, Clean Energy, 3, 2 (2019); https://doi.org/10.1093/ce/zky020
G. Simonelli, J. Ferreira Jr., C. Pires and L. Santos, Res., Soc. Develop., 9, e99911672 (2020); https://doi.org/10.33448/rsd-v9i1.1672
J. Mwangi, W. Lee, Y. Chang, C. Chen and L. Wang, Appl. Energy, 159, 214 (2015); https://doi.org/10.1016/j.apenergy.2015.08.084
A. Vyas, J. Verma and N. Subrahmanyam, Fuel, 89, 1 (2010); https://doi.org/10.1016/j.fuel.2009.08.014
G. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
S. Lim and K. Lee, Chem. Eng. J., 221, 436 (2013); https://doi.org/10.1016/j.cej.2013.02.014
G. Guan, N. Sakurai and K. Kusakabe, Chem. Eng. J., 146, 302 (2009); https://doi.org/10.1016/j.cej.2008.10.009
Y. Alhassan, N. Kumar, I. Bugaje, H. Pali and P. Kathkar, Energy Convers. Manage., 84, 640 (2014); https://doi.org/10.1016/j.enconman.2014.04.080
S. Mahajan, S. Konar and D. Boocock, J. Am. Oil Chem. Soc., 83, 641 (2006); https://doi.org/10.1007/s11746-006-1251-6
T. Julianto and R. Nurlestari, IOP Conf. Series Mater. Sci. Eng., 349, 012063 (2018); https://doi.org/10.1088/1757-899X/349/1/012063
Perry’s Chemical Engineering Handbook, McGraw-Hill, Ed. 7, pp. 732- 2293 (2004).
M. Hájek, A. Vávra, P. Mach and A. Straková, J. Environ. Manage., 262, 110295 (2020); https://doi.org/10.1016/j.jenvman.2020.110295
A. Chandrasekaran, C. Kim, S. Venkatram and R. Ramprasad, Macromolecules, 53, 4764 (2020); https://doi.org/10.1021/acs.macromol.0c00251
T. Muppaneni, H. Reddy, P. Patil, P. Dailey, C. Aday and S. Deng, Appl. Energy, 94, 84 (2012); https://doi.org/10.1016/j.apenergy.2012.01.023
N. Jomtib, C. Prommuak, M. Goto, M. Sasaki and A. Shotipruk, Eng. J., 15, 49 (2011); https://doi.org/10.4186/ej.2011.15.3.49
L. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda and H. Bandow, Fuel, 103, 742 (2013); https://doi.org/10.1016/j.fuel.2012.09.029
M. Lam and K. Lee, Fuel Process. Technol., 110, 242 (2013); https://doi.org/10.1016/j.fuproc.2012.12.021
L. Wu, K. Huang, T. Wei, Z. Lin, Y. Zou and Z. Tong, Fuel, 186, 597 (2016); https://doi.org/10.1016/j.fuel.2016.08.106
J. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065