Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Brewing Nanochemistry with Green Tea: A Review with Sustainable Approaches
Corresponding Author(s) : Ashu Gupta
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The growth of the “green chemistry” has brought to the society a new prospects and broader picture of what mankind can achieve through sustainable manipulation at the chemical scale. Why nature is so important to human being and we must protect our environment. Nature preservation could be achieved by opting the fundamental concepts underlying the principles of green and sustainable chemistry. The use as well as generation of unwanted or harmful byproducts must be avoided by adopting simple, safer and authentic synthesis methodologies. To attain this goal, utilization of natural ecofriendly systems is highly crucial and desired. Among the available physical, chemical and other biogenic green procedures of fabrication for various metal-based nanoparticles, green tea extract application is relatively simple, quick in approach and safer way to generate these nanoparticles. In present review, the different reported metal nanoparticles synthetic methods using green tea is collectively emphasized. The literature precedents using mentioned reports has already been proved themselves cost effective, efficient and eco-friendly alternative for generating metal nanoparticles. Present work also provides the reported applications of generated nanoparticles, which are prepared by this benign procedure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press: New York, pp. 29-56 (1998).
- J.B. Zimmerman, P.T. Anastas, H.C. Erythropel and W. Leitner, Science, 367, 397 (2020); https://doi.org/10.1126/science.aay3060
- P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, S. Kannampuzha, M. Patil, A.G. Mukherjee, U.R. Wanjari, K. Renu, B. Vellingiri and A.V. Gopalakrishnan, Environ. Sci. Pollut. Res., (2022); https://doi.org/10.1007/s11356-022-20024-4
- K.N. Ganesh, D. Zhang, S.J. Miller, K. Rossen, P.J. Chirik, M.C. Kozlowski, J.B. Zimmerman, B.W. Brooks, P.E. Savage, D.T. Allen, and A.M. Voutchkova-Kostal, ACS Omega, 6, 16254 (2021); https://doi.org/10.1021/acsomega.1c03011
- M.J. Mulvihill, E.S. Beach, J.B. Zimmerman and P.T. Anastas, Annu. Rev. Environ. Resour., 36, 271 (2011); https://doi.org/10.1146/annurev-environ-032009-095500
- O.V. Kharissova, B.I. Kharisov, C.M. Oliva González, Y.P. Méndez and I. López, R. Soc. Open Sci., 6, 191378 (2019); https://doi.org/10.1098/rsos.191378
- M.N. Alam, N. Roy, D. Mandal and N.A. Begum, RSC Adv., 3, 11935 (2013); https://doi.org/10.1039/c3ra23133j
- J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnology, 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
- P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
- C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2022); https://doi.org/10.3390/biom12010031
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- S. Jain and M.S. Mehata, Sci. Rep., 7, 15867 (2017); https://doi.org/10.1038/s41598-017-15724-8
- R.K. Sharma, G. Ahuja and I.T. Sidhwani, Green Chem. Lett. Rev., 2, 101 (2009); https://doi.org/10.1080/17518250903117463
- R.K. Sharma, C. Sharma and I.T. Sidhwani, J. Chem. Educ., 88, 86 (2011); https://doi.org/10.1021/ed100473u
- I.T. Horváth and P.T. Anastas, Chem. Rev., 107, 2169 (2007); https://doi.org/10.1021/cr078380v
- Y. Kim and C.-J. Li, Green Synth. Catal., 1, 1 (2020); https://doi.org/10.1016/j.gresc.2020.06.002
- V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
- J.K. Patra and K.-H. Baek, J. Nanomater., 2014, 417305 (2014); https://doi.org/10.1155/2014/417305
- I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
- D. Sharma, S. Kanchi and K. Bisetty, Arab. J. Chem., 12, 3576 (2019); https://doi.org/10.1016/j.arabjc.2015.11.002
- M.S. Akhtar, J. Panwar and Y.-S. Yun, ACS Sustain. Chem. & Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
- X. Li, H. Xu, Z.-S. Chen and G. Chen, J. Nanomater., 2011, 270974 (2011); https://doi.org/10.1155/2011/270974
- S. Menon, S. Rajeshkumar and V. Kumar, Resource-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
- A.G. Ingale and A. Chaudhari, J. Nanomed. Nanotechnol., 4, 1 (2013); https://doi.org/10.4172/2157-7439.1000165
- S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
- W. Rolim, M. Pelegrino, B. de Araujo Lima, L. Ferraz, F. Costa, J. Bernardes, T. Rodigues, M. Brocchi and A. Seabra, Appl. Surf. Sci., 463, 66 (2018); https://doi.org/10.1016/j.apsusc.2018.08.203
- Y. Khan, A. Siddiqui and A. Ahmad, ACS Omega, 4, 16956 (2019); https://doi.org/10.1021/acsomega.9b02317
- B.S. Inbaraj, K. Sridhar and B.-H. Chen, J. Hazard. Mater., 415, 125701 (2021); https://doi.org/10.1016/j.jhazmat.2021.125701
- S.Y. Tameu Djoko, H. Bashiri, E.T. Njoyim, M. Arabameri, S. Djepang, A.K. Tamo, S. Laminsi, M. Tasbihi, M. Schwarze and R. Schomäcker, J. Photochem. Photobiol. Chem., 398, 112596 (2020); https://doi.org/10.1016/j.jphotochem.2020.112596
- M. Azizi-Lalabadi, L. Rafiei, B. Divband and A. Ehsani, Food Sci. Nutr., 8, 6445 (2020); https://doi.org/10.1002/fsn3.1934
- T. Gholami, M. Salavati-Niasari, A. Salehabadi, M. Amiri, M. ShabaniNooshabadi and M. Rezaie, Renew. Energy, 115, 199 (2018); https://doi.org/10.1016/j.renene.2017.08.037
- Y. Khan, A. Ahmad, N. Ahmad, F.R. Mir and G. Schories, Nanoscale Adv., 2, 1634 (2020); https://doi.org/10.1039/D0NA00029A
- T. Wang, F. Zhang, R. Zhao, C. Wang, K. Hu, Y. Sun, C. Politis, A. Shavandi and L. Nie, Des. Monomers Polym., 23, 118 (2020); https://doi.org/10.1080/15685551.2020.1804183
- H.N. Graham, Prev. Med., 21, 334 (1992); https://doi.org/10.1016/0091-7435(92)90041-F
- S. Liao, Y.-H. Kao and R.A. Hiipakka, Vitam. Horm., 62, 1 (2001); https://doi.org/10.1016/s0083-6729(01)62001-6
- L. Xing, H. Zhang, R. Qi, R. Tsao and Y. Mine, J. Agric. Food Chem., 67, 1029 (2019); https://doi.org/10.1021/acs.jafc.8b06146
- S. Bansal, N. Syan, P. Mathur and S. Choudhary, Med. Chem. Res., 21, 3347 (2012); https://doi.org/10.1007/s00044-011-9800-4
- M. Weerawatanakorn, W-L. Hung, M.-H. Pan, S. Lib, D.Li, X.Wan and C.-T. Ho, Food Sci. Human Wellness, 4, 133 (2015); https://doi.org/10.1016/j.fshw.2015.10.002
- N.T. Zaveri, Life Sci., 78, 2073 (2006); https://doi.org/10.1016/j.lfs.2005.12.006
- I. Ikeda, M. Kobayashi, T. Hamada, K. Tsuda, H. Goto, K. Imaizumi, A. Nozawa, A. Sugimoto and T. Kakuda, J. Agric. Food Chem., 51, 7303 (2003); https://doi.org/10.1021/jf034728l
- L. Cui, Y. Liu, T. Liu, Y. Yuan, T. Yue, R. Cai and Z. Wang, J. Food Sci., 82, 394 (2017); https://doi.org/10.1111/1750-3841.13622
- L. Wang, X. Huang, H. Jing, X. Ye, C. Jiang, J. Shao, C. Ma and H. Wang, Anal. Methods, 13, 832 (2021); https://doi.org/10.1039/D0AY02118K
- G.-J. Du, Z. Zhang, X.-D. Wen, C. Yu, T. Calway, C.-S. Yuan and C.-Z. Wang, Nutrients, 4, 1679 (2012); https://doi.org/10.3390/nu4111679
- I.G. Saleh, Z. Ali, N. Abe, F.D. Wilson, F.M. Hamada, M.F. Abd-Ellah, L.A. Walker, I.A. Khan and M.K. Ashfaq, Fitoterapia, 90, 151 (2013); https://doi.org/10.1016/j.fitote.2013.07.014
- D. Botten, G. Fugallo, F. Fraternali and C. Molteni, J. Phys. Chem. B, 119, 12860 (2015); https://doi.org/10.1021/acs.jpcb.5b08737
- W.R. Rolim, M.T. Pelegrino, B. de Araújo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi and A.B. Seabra, Appl. Surf. Sci., 463, 66 (2019); https://doi.org/10.1016/j.apsusc.2018.08.203
- A.K. Mitra, J. Chem. Rev., 2, 243 (2020); https://doi.org/10.22034/JCR.2020.112730
- S.K. Nune, N. Chanda, R. Shukla, R.R. Kulkarni, S. Thilakavathy, K. Katti, S. Mekapothula, R. Kannan and K.V. Katti, J. Mater. Chem., 19, 2912 (2009); https://doi.org/10.1039/b822015h
- H.R. El-Seedi, R.M. El-Shabasy, S.A. Khalifa, A. Saeed, A. Shah, R. Shah, F.J. Iftikhar, M.M. Abdel-Daim, A. Omri, N.H. Hajrahand, J.S.M. Sabir, X. Zou, M.F. Halabi, W. Sarhan and W. Guo, RSC Adv., 9, 24539 (2019); https://doi.org/10.1039/C9RA02225B
- K.S.V. Gottimukkala, P.H. Reddy and D. Zamare, J. Nanomed. Biotherapeut. Discov., 7, 151 (2017); https://doi.org/10.4172/2155-983X.1000151
- S. Saif, A. Tahir and Y. Chen, Nanomaterials, 6, 209 (2016); https://doi.org/10.3390/nano6110209
- Y. Kuang, Q. Wang, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 410, 67 (2013); https://doi.org/10.1016/j.jcis.2013.08.020
- D. Rajput, S. Paul and A. Gupta, Adv. Nano Res., 3, 2485 (2020); https://doi.org/10.21467/anr.3.1.1-14
- M. Pattanayak and P. Nayak, Int. J. Plant Animal Environ. Sci., 2013, 68 (2013).
- G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
- M. Raja and Pearlin, J. Biol. Inform. Sci., 4, 6 (2015).
- C. Mystrioti, A. Xenidis and N. Papassiopi, J. Geosci. Environ. Prot., 2, 28 (2014); https://doi.org/10.4236/gep.2014.24005
- http://recentscientific.com/green-synthesis-iron-nanoparticles-usedgreen-tea-l
- T. Wang, J. Lin, Z. Chen, M. Megharaj and R. Naidu, J. Clean. Prod., 83, 413 (2014); https://doi.org/10.1016/j.jclepro.2014.07.006
- A.C. Dhanemozhi, V. Rajeswari and S. Sathyajothi, Mater. Today Proc., 4, 660 (2017); https://doi.org/10.1016/j.matpr.2017.01.070
- S. Irshad, A. Salamat, A.A. Anjum, S. Sana, R.S. Saleem, A. Naheed and A. Iqbal, Cogent Chem., 4, 1469207 (2018); https://doi.org/10.1080/23312009.2018.1469207
- S.R. Senthilkumar and S. Thirumal, Int. J. Pharm. Pharm. Sci., 6, 461 (2014).
- A. Singh, K. Teegardin, M. Kelly, K.S. Prasad, S. Krishnan and J.D. Weaver, J. Organomet. Chem., 776, 51 (2015); https://doi.org/10.1016/j.jorganchem.2014.10.037
- P. Sutradhar and M. Saha, Bull. Mater. Sci., 38, 653 (2015).
- A. Chandra, A. Bhattarai, A.K. Yadav, J. Adhikari, M. Singh and B. Giri, ChemistrySelect, 5, 4239 (2020); https://doi.org/10.1002/slct.201904826
- D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar and A. Kalilur Rahiman, J. Photochem. Photobiol. B, 180, 243 (2018); https://doi.org/10.1016/j.jphotobiol.2018.02.014
- Y.Y. Loo, B.W. Chieng, M. Nishibuchi and S. Radu, Int. J. Nanomedicine, 7, 4263 (2012); https://doi.org/10.2147/IJN.S33344
- M. Nakhjavani, V. Nikkhah, M.M. Sarafraz, S. Shoja and M. Sarafraz, Heat Mass Transf., 53, 3201 (2017); https://doi.org/10.1007/s00231-017-2065-9
- Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen and C.-P. Yu, Colloids Surf. A Physicochem. Eng. Asp., 444, 226 (2014); https://doi.org/10.1016/j.colsurfa.2013.12.065
- D.I. Hasri, I. Dini, S.P.J. Negara and Subaer, Mater. Sci. Forum, 967, 161 (2019); https://doi.org/10.4028/www.scientific.net/MSF.967.161
- W. Qing, K. Chen, Y. Wang, X. Liu and M. Lu, Appl. Surf. Sci., 423, 1019 (2017); https://doi.org/10.1016/j.apsusc.2017.07.007
- V. Kumar, R. Wadhwa, N. Kumar and P.K. Maurya, 3 Biotech, 9, 7 (2019); https://doi.org/10.1007/s13205-018-1544-0
- Y.J. Lee, E.-Y. Ahn and Y. Park, Nanoscale Res. Lett., 14, 129 (2019); https://doi.org/10.1186/s11671-019-2967-1
- R.K. Sharma, S. Gulati and S. Mehta, J. Chem. Educ., 89, 1316 (2012); https://doi.org/10.1021/ed2002175
- S.K. Boruah, P. Boruah, P. Sarma, C. Medhi and O. Kumar, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
- A.R. Vilchis-Nestor, V. Sánchez-Mendieta, M.A. Camacho-López, R.M. Gómez-Espinosa, M.A. Camacho-López and J.A. Arenas-Alatorre, Mater. Lett., 62, 3103 (2008); https://doi.org/10.1016/j.matlet.2008.01.138
- S. Onitsuka, T. Hamada and H. Okamura, Colloids Surf. B Biointerfaces, 173, 242 (2019); https://doi.org/10.1016/j.colsurfb.2018.09.055
- M. Cazzola, S. Ferraris, F. Boschetto, A. Rondinella, E. Marin, W. Zhu, G. Pezzotti, E. Vernè and S. Spriano, Int. J. Mol. Sci., 19, 2255 (2018); https://doi.org/10.3390/ijms19082255.
- S. Chen, S. Zhu, Y. He and D. Lu, Food Chem., 150, 254 (2014); https://doi.org/10.1016/j.foodchem.2013.10.150
- P.K. Vargas-Sanchez, D.L. Pitol, L.G. Sousa, M.M. Beloti, A.L. Rosa, A.C. Rossi, S. Siéssere and K.F. Bombonato-Prado, Int. J. Exp. Pathol., 101, 277 (2020); https://doi.org/10.1111/iep.12379
- H. Li, W. Hu, M.M. Hassan, Z. Zhang and Q. Chen, J. Food Meas. Charact., 13, 259 (2019); https://doi.org/10.1007/s11694-018-9940-z
- P. Prema, T. Boobalan, A. Arun, K. Rameshkumar, R. Suresh Babu, V. Veeramanikandan, V.-H. Nguyen and P. Balaji, Mater. Lett., 306, 130882 (2022); https://doi.org/10.1016/j.matlet.2021.130882
- Q. Liu, H. Liu, Z. Yuan, D. Wei and Y. Ye, Colloids Surf. B Biointerfaces, 92, 348 (2012); https://doi.org/10.1016/j.colsurfb.2011.12.007
- S.H. Joo and S. Aggarwal, J. Environ. Manage., 225, 62 (2018); https://doi.org/10.1016/j.jenvman.2018.07.084
- C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai and S.L. Rokhum, RSC Adv., 11, 2804 (2021); https://doi.org/10.1039/D0RA09941D
- P. Sutradhar and M. Saha, Bull. Mater. Sci., 38, 653 (2015); https://doi.org/10.1007/s12034-015-0895-y
- A. Chandra, A. Bhattarai, A.K. Yadav, J. Adhikari, M. Singh and B. Giri, ChemistrySelect, 5, 4239 (2020); https://doi.org/10.1002/slct.201904826
- Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen and C.-P. Yu, Colloids Surf. A, 444, 226 (2014); https://doi.org/10.1016/j.colsurfa.2013.12.065
- A. Gautam, S. Rawat, L. Verma, J. Singh, S. Sikarwar, B.C. Yadav and A.S.Kalamdhad, Environ. Nanotechnol. Monitor. Manage., 10, 377 (2018); https://doi.org/10.1016/j.enmm.2018.08.003
- A. Antony and M. Farid, Appl. Sci., 12, 2107 (2022); https://doi.org/10.3390/app12042107
- S Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram and L.Y. Latha, Afr. J. Tradit. Complement Altern. Med., 8, 1 (2011)
- K. Zhang, S. Ai, J. Xie and J. Xu, Inorg. Nano-Met. Chem., 47, 938 (2017); https://doi.org/10.1080/24701556.2016.1241265
References
P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press: New York, pp. 29-56 (1998).
J.B. Zimmerman, P.T. Anastas, H.C. Erythropel and W. Leitner, Science, 367, 397 (2020); https://doi.org/10.1126/science.aay3060
P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, S. Kannampuzha, M. Patil, A.G. Mukherjee, U.R. Wanjari, K. Renu, B. Vellingiri and A.V. Gopalakrishnan, Environ. Sci. Pollut. Res., (2022); https://doi.org/10.1007/s11356-022-20024-4
K.N. Ganesh, D. Zhang, S.J. Miller, K. Rossen, P.J. Chirik, M.C. Kozlowski, J.B. Zimmerman, B.W. Brooks, P.E. Savage, D.T. Allen, and A.M. Voutchkova-Kostal, ACS Omega, 6, 16254 (2021); https://doi.org/10.1021/acsomega.1c03011
M.J. Mulvihill, E.S. Beach, J.B. Zimmerman and P.T. Anastas, Annu. Rev. Environ. Resour., 36, 271 (2011); https://doi.org/10.1146/annurev-environ-032009-095500
O.V. Kharissova, B.I. Kharisov, C.M. Oliva González, Y.P. Méndez and I. López, R. Soc. Open Sci., 6, 191378 (2019); https://doi.org/10.1098/rsos.191378
M.N. Alam, N. Roy, D. Mandal and N.A. Begum, RSC Adv., 3, 11935 (2013); https://doi.org/10.1039/c3ra23133j
J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnology, 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2022); https://doi.org/10.3390/biom12010031
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
S. Jain and M.S. Mehata, Sci. Rep., 7, 15867 (2017); https://doi.org/10.1038/s41598-017-15724-8
R.K. Sharma, G. Ahuja and I.T. Sidhwani, Green Chem. Lett. Rev., 2, 101 (2009); https://doi.org/10.1080/17518250903117463
R.K. Sharma, C. Sharma and I.T. Sidhwani, J. Chem. Educ., 88, 86 (2011); https://doi.org/10.1021/ed100473u
I.T. Horváth and P.T. Anastas, Chem. Rev., 107, 2169 (2007); https://doi.org/10.1021/cr078380v
Y. Kim and C.-J. Li, Green Synth. Catal., 1, 1 (2020); https://doi.org/10.1016/j.gresc.2020.06.002
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
J.K. Patra and K.-H. Baek, J. Nanomater., 2014, 417305 (2014); https://doi.org/10.1155/2014/417305
I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
D. Sharma, S. Kanchi and K. Bisetty, Arab. J. Chem., 12, 3576 (2019); https://doi.org/10.1016/j.arabjc.2015.11.002
M.S. Akhtar, J. Panwar and Y.-S. Yun, ACS Sustain. Chem. & Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
X. Li, H. Xu, Z.-S. Chen and G. Chen, J. Nanomater., 2011, 270974 (2011); https://doi.org/10.1155/2011/270974
S. Menon, S. Rajeshkumar and V. Kumar, Resource-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
A.G. Ingale and A. Chaudhari, J. Nanomed. Nanotechnol., 4, 1 (2013); https://doi.org/10.4172/2157-7439.1000165
S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
W. Rolim, M. Pelegrino, B. de Araujo Lima, L. Ferraz, F. Costa, J. Bernardes, T. Rodigues, M. Brocchi and A. Seabra, Appl. Surf. Sci., 463, 66 (2018); https://doi.org/10.1016/j.apsusc.2018.08.203
Y. Khan, A. Siddiqui and A. Ahmad, ACS Omega, 4, 16956 (2019); https://doi.org/10.1021/acsomega.9b02317
B.S. Inbaraj, K. Sridhar and B.-H. Chen, J. Hazard. Mater., 415, 125701 (2021); https://doi.org/10.1016/j.jhazmat.2021.125701
S.Y. Tameu Djoko, H. Bashiri, E.T. Njoyim, M. Arabameri, S. Djepang, A.K. Tamo, S. Laminsi, M. Tasbihi, M. Schwarze and R. Schomäcker, J. Photochem. Photobiol. Chem., 398, 112596 (2020); https://doi.org/10.1016/j.jphotochem.2020.112596
M. Azizi-Lalabadi, L. Rafiei, B. Divband and A. Ehsani, Food Sci. Nutr., 8, 6445 (2020); https://doi.org/10.1002/fsn3.1934
T. Gholami, M. Salavati-Niasari, A. Salehabadi, M. Amiri, M. ShabaniNooshabadi and M. Rezaie, Renew. Energy, 115, 199 (2018); https://doi.org/10.1016/j.renene.2017.08.037
Y. Khan, A. Ahmad, N. Ahmad, F.R. Mir and G. Schories, Nanoscale Adv., 2, 1634 (2020); https://doi.org/10.1039/D0NA00029A
T. Wang, F. Zhang, R. Zhao, C. Wang, K. Hu, Y. Sun, C. Politis, A. Shavandi and L. Nie, Des. Monomers Polym., 23, 118 (2020); https://doi.org/10.1080/15685551.2020.1804183
H.N. Graham, Prev. Med., 21, 334 (1992); https://doi.org/10.1016/0091-7435(92)90041-F
S. Liao, Y.-H. Kao and R.A. Hiipakka, Vitam. Horm., 62, 1 (2001); https://doi.org/10.1016/s0083-6729(01)62001-6
L. Xing, H. Zhang, R. Qi, R. Tsao and Y. Mine, J. Agric. Food Chem., 67, 1029 (2019); https://doi.org/10.1021/acs.jafc.8b06146
S. Bansal, N. Syan, P. Mathur and S. Choudhary, Med. Chem. Res., 21, 3347 (2012); https://doi.org/10.1007/s00044-011-9800-4
M. Weerawatanakorn, W-L. Hung, M.-H. Pan, S. Lib, D.Li, X.Wan and C.-T. Ho, Food Sci. Human Wellness, 4, 133 (2015); https://doi.org/10.1016/j.fshw.2015.10.002
N.T. Zaveri, Life Sci., 78, 2073 (2006); https://doi.org/10.1016/j.lfs.2005.12.006
I. Ikeda, M. Kobayashi, T. Hamada, K. Tsuda, H. Goto, K. Imaizumi, A. Nozawa, A. Sugimoto and T. Kakuda, J. Agric. Food Chem., 51, 7303 (2003); https://doi.org/10.1021/jf034728l
L. Cui, Y. Liu, T. Liu, Y. Yuan, T. Yue, R. Cai and Z. Wang, J. Food Sci., 82, 394 (2017); https://doi.org/10.1111/1750-3841.13622
L. Wang, X. Huang, H. Jing, X. Ye, C. Jiang, J. Shao, C. Ma and H. Wang, Anal. Methods, 13, 832 (2021); https://doi.org/10.1039/D0AY02118K
G.-J. Du, Z. Zhang, X.-D. Wen, C. Yu, T. Calway, C.-S. Yuan and C.-Z. Wang, Nutrients, 4, 1679 (2012); https://doi.org/10.3390/nu4111679
I.G. Saleh, Z. Ali, N. Abe, F.D. Wilson, F.M. Hamada, M.F. Abd-Ellah, L.A. Walker, I.A. Khan and M.K. Ashfaq, Fitoterapia, 90, 151 (2013); https://doi.org/10.1016/j.fitote.2013.07.014
D. Botten, G. Fugallo, F. Fraternali and C. Molteni, J. Phys. Chem. B, 119, 12860 (2015); https://doi.org/10.1021/acs.jpcb.5b08737
W.R. Rolim, M.T. Pelegrino, B. de Araújo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi and A.B. Seabra, Appl. Surf. Sci., 463, 66 (2019); https://doi.org/10.1016/j.apsusc.2018.08.203
A.K. Mitra, J. Chem. Rev., 2, 243 (2020); https://doi.org/10.22034/JCR.2020.112730
S.K. Nune, N. Chanda, R. Shukla, R.R. Kulkarni, S. Thilakavathy, K. Katti, S. Mekapothula, R. Kannan and K.V. Katti, J. Mater. Chem., 19, 2912 (2009); https://doi.org/10.1039/b822015h
H.R. El-Seedi, R.M. El-Shabasy, S.A. Khalifa, A. Saeed, A. Shah, R. Shah, F.J. Iftikhar, M.M. Abdel-Daim, A. Omri, N.H. Hajrahand, J.S.M. Sabir, X. Zou, M.F. Halabi, W. Sarhan and W. Guo, RSC Adv., 9, 24539 (2019); https://doi.org/10.1039/C9RA02225B
K.S.V. Gottimukkala, P.H. Reddy and D. Zamare, J. Nanomed. Biotherapeut. Discov., 7, 151 (2017); https://doi.org/10.4172/2155-983X.1000151
S. Saif, A. Tahir and Y. Chen, Nanomaterials, 6, 209 (2016); https://doi.org/10.3390/nano6110209
Y. Kuang, Q. Wang, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 410, 67 (2013); https://doi.org/10.1016/j.jcis.2013.08.020
D. Rajput, S. Paul and A. Gupta, Adv. Nano Res., 3, 2485 (2020); https://doi.org/10.21467/anr.3.1.1-14
M. Pattanayak and P. Nayak, Int. J. Plant Animal Environ. Sci., 2013, 68 (2013).
G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
M. Raja and Pearlin, J. Biol. Inform. Sci., 4, 6 (2015).
C. Mystrioti, A. Xenidis and N. Papassiopi, J. Geosci. Environ. Prot., 2, 28 (2014); https://doi.org/10.4236/gep.2014.24005
http://recentscientific.com/green-synthesis-iron-nanoparticles-usedgreen-tea-l
T. Wang, J. Lin, Z. Chen, M. Megharaj and R. Naidu, J. Clean. Prod., 83, 413 (2014); https://doi.org/10.1016/j.jclepro.2014.07.006
A.C. Dhanemozhi, V. Rajeswari and S. Sathyajothi, Mater. Today Proc., 4, 660 (2017); https://doi.org/10.1016/j.matpr.2017.01.070
S. Irshad, A. Salamat, A.A. Anjum, S. Sana, R.S. Saleem, A. Naheed and A. Iqbal, Cogent Chem., 4, 1469207 (2018); https://doi.org/10.1080/23312009.2018.1469207
S.R. Senthilkumar and S. Thirumal, Int. J. Pharm. Pharm. Sci., 6, 461 (2014).
A. Singh, K. Teegardin, M. Kelly, K.S. Prasad, S. Krishnan and J.D. Weaver, J. Organomet. Chem., 776, 51 (2015); https://doi.org/10.1016/j.jorganchem.2014.10.037
P. Sutradhar and M. Saha, Bull. Mater. Sci., 38, 653 (2015).
A. Chandra, A. Bhattarai, A.K. Yadav, J. Adhikari, M. Singh and B. Giri, ChemistrySelect, 5, 4239 (2020); https://doi.org/10.1002/slct.201904826
D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar and A. Kalilur Rahiman, J. Photochem. Photobiol. B, 180, 243 (2018); https://doi.org/10.1016/j.jphotobiol.2018.02.014
Y.Y. Loo, B.W. Chieng, M. Nishibuchi and S. Radu, Int. J. Nanomedicine, 7, 4263 (2012); https://doi.org/10.2147/IJN.S33344
M. Nakhjavani, V. Nikkhah, M.M. Sarafraz, S. Shoja and M. Sarafraz, Heat Mass Transf., 53, 3201 (2017); https://doi.org/10.1007/s00231-017-2065-9
Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen and C.-P. Yu, Colloids Surf. A Physicochem. Eng. Asp., 444, 226 (2014); https://doi.org/10.1016/j.colsurfa.2013.12.065
D.I. Hasri, I. Dini, S.P.J. Negara and Subaer, Mater. Sci. Forum, 967, 161 (2019); https://doi.org/10.4028/www.scientific.net/MSF.967.161
W. Qing, K. Chen, Y. Wang, X. Liu and M. Lu, Appl. Surf. Sci., 423, 1019 (2017); https://doi.org/10.1016/j.apsusc.2017.07.007
V. Kumar, R. Wadhwa, N. Kumar and P.K. Maurya, 3 Biotech, 9, 7 (2019); https://doi.org/10.1007/s13205-018-1544-0
Y.J. Lee, E.-Y. Ahn and Y. Park, Nanoscale Res. Lett., 14, 129 (2019); https://doi.org/10.1186/s11671-019-2967-1
R.K. Sharma, S. Gulati and S. Mehta, J. Chem. Educ., 89, 1316 (2012); https://doi.org/10.1021/ed2002175
S.K. Boruah, P. Boruah, P. Sarma, C. Medhi and O. Kumar, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
A.R. Vilchis-Nestor, V. Sánchez-Mendieta, M.A. Camacho-López, R.M. Gómez-Espinosa, M.A. Camacho-López and J.A. Arenas-Alatorre, Mater. Lett., 62, 3103 (2008); https://doi.org/10.1016/j.matlet.2008.01.138
S. Onitsuka, T. Hamada and H. Okamura, Colloids Surf. B Biointerfaces, 173, 242 (2019); https://doi.org/10.1016/j.colsurfb.2018.09.055
M. Cazzola, S. Ferraris, F. Boschetto, A. Rondinella, E. Marin, W. Zhu, G. Pezzotti, E. Vernè and S. Spriano, Int. J. Mol. Sci., 19, 2255 (2018); https://doi.org/10.3390/ijms19082255.
S. Chen, S. Zhu, Y. He and D. Lu, Food Chem., 150, 254 (2014); https://doi.org/10.1016/j.foodchem.2013.10.150
P.K. Vargas-Sanchez, D.L. Pitol, L.G. Sousa, M.M. Beloti, A.L. Rosa, A.C. Rossi, S. Siéssere and K.F. Bombonato-Prado, Int. J. Exp. Pathol., 101, 277 (2020); https://doi.org/10.1111/iep.12379
H. Li, W. Hu, M.M. Hassan, Z. Zhang and Q. Chen, J. Food Meas. Charact., 13, 259 (2019); https://doi.org/10.1007/s11694-018-9940-z
P. Prema, T. Boobalan, A. Arun, K. Rameshkumar, R. Suresh Babu, V. Veeramanikandan, V.-H. Nguyen and P. Balaji, Mater. Lett., 306, 130882 (2022); https://doi.org/10.1016/j.matlet.2021.130882
Q. Liu, H. Liu, Z. Yuan, D. Wei and Y. Ye, Colloids Surf. B Biointerfaces, 92, 348 (2012); https://doi.org/10.1016/j.colsurfb.2011.12.007
S.H. Joo and S. Aggarwal, J. Environ. Manage., 225, 62 (2018); https://doi.org/10.1016/j.jenvman.2018.07.084
C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai and S.L. Rokhum, RSC Adv., 11, 2804 (2021); https://doi.org/10.1039/D0RA09941D
P. Sutradhar and M. Saha, Bull. Mater. Sci., 38, 653 (2015); https://doi.org/10.1007/s12034-015-0895-y
A. Chandra, A. Bhattarai, A.K. Yadav, J. Adhikari, M. Singh and B. Giri, ChemistrySelect, 5, 4239 (2020); https://doi.org/10.1002/slct.201904826
Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen and C.-P. Yu, Colloids Surf. A, 444, 226 (2014); https://doi.org/10.1016/j.colsurfa.2013.12.065
A. Gautam, S. Rawat, L. Verma, J. Singh, S. Sikarwar, B.C. Yadav and A.S.Kalamdhad, Environ. Nanotechnol. Monitor. Manage., 10, 377 (2018); https://doi.org/10.1016/j.enmm.2018.08.003
A. Antony and M. Farid, Appl. Sci., 12, 2107 (2022); https://doi.org/10.3390/app12042107
S Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram and L.Y. Latha, Afr. J. Tradit. Complement Altern. Med., 8, 1 (2011)
K. Zhang, S. Ai, J. Xie and J. Xu, Inorg. Nano-Met. Chem., 47, 938 (2017); https://doi.org/10.1080/24701556.2016.1241265