Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Organic Reactions in Liquid Phase by Perovskite Oxides: A Review
Corresponding Author(s) : Rajib Mistri
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The structural flexibility and controllable physico-chemical characters of perovskite oxides have drawn major attention of researchers for catalytic reactions. Perovskite oxide are mainly used as catalysts for electrochemical, high temperature gas-phase and photocatalytic reactions but their uses for catalytic organic reactions in liquid phase are limited. Various porous and nano-perovskite oxides have been prepared by different methods are effectively used as catalyst for different types of organic reactions in liquid phase. The liquid-phase catalytic organic reactions over perovskite oxides have been classified mainly into three groups: (i) acid/base catalyzed, (ii) selective oxidation and (iii) cross-coupling reactions. This review article mainly emphases on different examples of perovskite oxides catalyzed organic reactions in liquid phase along with the relationships among the unique catalytic performance with the structural and the physico-chemical properties of perovskites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.-J. Li and B.M. Trost, PNAS, 105, 13197 (2008) https://doi.org/10.1073/pnas.0804348105
- R.A. Sheldon, Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
- C.J. Clarke, W.-C. Tu, O. Levers, A. Brôhl and J.P. Hallett, Chem. Rev., 118, 747 (2018); https://doi.org/10.1021/acs.chemrev.7b00571
- K. Kamata, Bull. Chem. Soc. Jpn., 92, 133 (2019); https://doi.org/10.1246/bcsj.20180260
- V.L. Sushkevich, D. Palagin, M. Ranocchiari and J.A. van Bokhoven, Science, 356, 523 (2017); https://doi.org/10.1126/science.aam9035
- S.H. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. MalerødFjeld, P.K. Vestre, W.G. Coors, A. Martínez, T. Norby, J.M. Serra and C. Kjølseth, Science, 353, 563 (2016); https://doi.org/10.1126/science.aag0274
- T. Komanoya, T. Kinemura, Y. Kita, K. Kamata and M. Hara, J. Am. Chem. Soc., 139, 11493 (2017); https://doi.org/10.1021/jacs.7b04481
- S. Kanai, I. Nagahara, Y. Kita, K. Kamata and M. Hara, Chem. Sci., 8, 3146 (2017); https://doi.org/10.1039/C6SC05642C
- M.J. C liment, A. Corma and S. Iborra, Green Chem., 16, 516 (2014); https://doi.org/10.1039/C3GC41492B
- M. Hara, K. Nakajima and K. Kamata, Sci. Technol. Adv. Mater., 16, 034903 (2015); https://doi.org/10.1088/1468-6996/16/3/034903
- D.M. Alonso, S.G. Wettstein and J.A. Dumesic, Chem. Soc. Rev., 41, 8075 (2012); https://doi.org/10.1039/c2cs35188a
- M. Besson, P. Gallezot and C. Pinel, Chem. Rev., 114, 1827 (2014); https://doi.org/10.1021/cr4002269
- B. Cornils, W.A. Herrmann, M. Beller and R. Paciello, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Ed.: 3, Wiley-VCH: Weinheim (2017).
- J. Hagen, Industrial Catalysis: A Practical Approach, Wiley-VCH: Weinheim (1999).
- G. Ertl, H. Knözinger and J. Weitkamp, Handbook of Heterogeneous Catalysis, Ed. 2, Wiley-VCH: Weinheim (2008).
- N. Mizuno, Modern Heterogeneous Oxidation Catalysis, Wiley-VCH: Weinheim (2009).
- K. Yamaguchi and N. Mizuno, Syn. Lett., 2365 (2010); https://doi.org/10.1055/s-0030-1258565
- A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara and K. Domen, Energy Environ. Sci., 3, 82 (2010); https://doi.org/10.1039/B918563A
- M. Hechelski, A. Ghinet, B. Louvel, P. Dufrénoy, B. Rigo, A. Daïch and C. Waterlot, ChemSusChem, 11, 1249 (2018); https://doi.org/10.1002/cssc.201702435
- S. Ishikawa, Z. Zhang and W. Ueda, ACS Catal., 8, 2935 (2018); https://doi.org/10.1021/acscatal.7b02244
- N. Mizuno, K. Yamaguchi and K. Kamata, Catal. Surv. Asia, 15, 68 (2011); https://doi.org/10.1007/s10563-011-9111-2
- A. Enferadi-Kerenkan, T.-O. Do and S. Kaliaguine, Catal. Sci. Technol., 8, 2257 (2018); https://doi.org/10.1039/C8CY00281A
- C. Martínez and A. Corma, Coord. Chem. Rev., 255, 1558 (2011); https://doi.org/10.1016/j.ccr.2011.03.014
- J. Liang, Z. Liang, R. Zou and Y. Zhao, Adv. Mater., 29, 1701139 (2017); https://doi.org/10.1002/adma.201701139
- K. Kaneda and T. Mizugaki, ACS Catal., 7, 920 (2017); https://doi.org/10.1021/acscatal.6b02585
- D. Astruc, F. Lu and J.R. Aranzaes, Angew. Chem. Int. Ed. Engl., 44, 7852 (2005); https://doi.org/10.1002/anie.200500766
- A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Chem. Commun., 48, 11275 (2012); https://doi.org/10.1039/c2cc34329k
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 43, 6011 (2014); https://doi.org/10.1039/C4CS00094C
- R. Akiyama and S. Kobayashi, Chem. Rev., 109, 594 (2009); https://doi.org/10.1021/cr800529d
- Q. Sun, Z. Dai, X. Meng and F.-S. Xiao, Chem. Soc. Rev., 44, 6018 (2015); https://doi.org/10.1039/C5CS00198F
- D. Wang and D. Astruc, Coord. Chem. Rev., 257, 2317 (2013); https://doi.org/10.1016/j.ccr.2013.03.032
- K. Nakajima and M. Hara, ACS Catal., 2, 1296 (2012); https://doi.org/10.1021/cs300103k
- Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012); https://doi.org/10.1002/anie.201101182
- D. Chen, C. Chen, Z.M. Baiyee, Z. Shao and F. Ciucci, Chem. Rev., 115, 9869 (2015); https://doi.org/10.1021/acs.chemrev.5b00073
- F. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012); https://doi.org/10.1039/c1cs15228a
- D.U. Lee, P. Xu, Z.P. Cano, A.G. Kashkooli, M.G. Park and Z. Chen, J. Mater. Chem. A Mater. Energy Sustain., 4, 7107 (2016); https://doi.org/10.1039/C6TA00173D
- X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong and Z. Liu, ACS Catal., 5, 4643 (2015); https://doi.org/10.1021/acscatal.5b00524
- P. Tan, M. Liu, Z. Shao and M. Ni, Adv. Energy Mater., 7, 1602674 (2017); https://doi.org/10.1002/aenm.201602674
- S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri and H. Alamdari, Chem. Rev., 114, 10292 (2014); https://doi.org/10.1021/cr500032a
- N. Labhasetwar, G. Saravanan, S.K. Megarajan, N. Manwar, R. Khobragade, P. Doggali and F. Grasset, Sci. Technol. Adv. Mater., 16, 036002 (2015); https://doi.org/10.1088/1468-6996/16/3/036002
- J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao and J. Li, ACS Catal., 4, 2917 (2014); https://doi.org/10.1021/cs500606g
- F. Polo-Garzon and Z. Wu, J. Mater. Chem. A Mater. Energy Sustain., 6, 2877 (2018); https://doi.org/10.1039/C7TA10591F
- H. Zhu, P. Zhang and S. Dai, ACS Catal., 5, 6370 (2015); https://doi.org/10.1021/acscatal.5b01667
- M. Konsolakis, ACS Catal., 5, 6397 (2015); https://doi.org/10.1021/acscatal.5b01605
- E.A.R. Assirey, Saudi Pharm. J., 27, 817 (2019); https://doi.org/10.1016/j.jsps.2019.05.003
- P. Yadav, S. Yadav and R. Tomar, ChemistrySelect, 6, 12947 (2021); https://doi.org/10.1002/slct.202102292
- E. Grabowska, Appl. Catal. B, 186, 97 (2016); https://doi.org/10.1016/j.apcatb.2015.12.035
- W. Wang, M.O. Tadé and Z. Shao, Chem. Soc. Rev., 44, 5371 (2015); https://doi.org/10.1039/C5CS00113G
- M. Kubicek, A.H. Bork and J.L.M. Rupp, J. Mater. Chem. A Mater. Energy Sustain., 5, 11983 (2017); https://doi.org/10.1039/C7TA00987A
- P. Chandra, ChemistrySelect, 6, 7557 (2021); https://doi.org/10.1002/slct.202101434
- G.F. Teixeira, E. Silva Junior, R. Vilela, M.A. Zaghete and F. Colmati, Catalysts, 9, 721 (2019); https://doi.org/10.3390/catal9090721
- H. Kleineberg, M. Eisenacher, H. Lange, H. Strutz and R. Palkovits, Catal. Sci. Technol., 6, 6057 (2016); https://doi.org/10.1039/C5CY01479D
- A. Takagaki, M. Sugisawa, D. Lu, J.N. Kondo, M. Hara, K. Domen and S. Hayashi, J. Am. Chem. Soc., 125, 5479 (2003); https://doi.org/10.1021/ja034085q
- S. Yamaguchi, T. Okuwa, H. Wada, H. Yamaura and H. Yahiro, Res. Chem. Intermed., 41, 9551 (2015); https://doi.org/10.1007/s11164-015-1980-y
- N. Pal, M. Paul and A. Bhaumik, Appl. Catal. A, 393, 153 (2011); https://doi.org/10.1016/j.apcata.2010.11.037
- S. Ray, P. Das, B. Banerjee, A. Bhaumik and C. Mukhopadhyay, ChemPlusChem, 80, 731 (2015); https://doi.org/10.1002/cplu.201402405
- H. Singh and J.K. Rajput, J. Mater. Sci., 53, 3163 (2018); https://doi.org/10.1007/s10853-017-1790-2
- R. Mistri, D. Das, J. Llorca, M. Dominguez, T.K. Mandal, P. Mohanty, B.C. Ray and A. Gayen, RSC Adv., 6, 4469 (2016); https://doi.org/10.1039/C5RA22592B
- A.A. Ansari, S.F. Adil, M. Alam, N. Ahmad, M.E. Assal, J.P. Labis and A. Alwarthan, Sci. Rep., 10, 15012 (2020); https://doi.org/10.1038/s41598-020-71869-z
- S.J. Singh and R.V. Jayaram, Catal. Commun., 10, 2004 (2009); https://doi.org/10.1016/j.catcom.2009.07.018
- C. Saux, C. Leal Marchena, R. Dinamarca, G. Pecchi and L. Pierella, Catal. Commun., 76, 58 (2016); https://doi.org/10.1016/j.catcom.2015.12.023
- C. Liu, Z. Zhao, X. Yang, X. Ye and Y. Wu, Chin. J. Chem., 14, 516 (1996).
- C. Liu, Z. Zhao, X. Yang, X. Ye and Y. Wu, Chem. Commun., 1019 (1996); https://doi.org/10.1039/CC9960001019
- S. Saha and S.B. Abd Hamid, RSC Adv., 7, 9914 (2017); https://doi.org/10.1039/C6RA26370D
- C.D. Evans, S.A. Kondrat, P.J. Smith, T.D. Manning, P.J. Miedziak, G.L. Brett, R.D. Armstrong, J.K. Bartley, S.H. Taylor, M.J. Rosseinsky and G.J. Hutchings, Faraday Discuss., 188, 427 (2016); https://doi.org/10.1039/C5FD00187K
- I.B. Adilina, T. Hara, N. Ichikuni, N. Kumada and S. Shimazu, Bull. Chem. Soc. Jpn., 86, 146 (2013); https://doi.org/10.1246/bcsj.20120215
- A. Rahmani and J. Saari, J. Nanostruct., 6, 301 (2016); https://doi.org/10.22052/JNS.2016.34270
- S. Sugunan and V. Meera, Indian J. Chem., 34A, 984 (1995).
- S. Kawasaki, K. Kamata and M. Hara, ChemCatChem, 8, 3247 (2016); https://doi.org/10.1002/cctc.201600613
- K. Sugahara, K. Kamata, S. Muratsugu and M. Hara, ACS Omega, 2, 1608 (2017); https://doi.org/10.1021/acsomega.7b00146
- K. Kamata, K. Sugahara, Y. Kato, S. Muratsugu, Y. Kumagai, F. Oba and M. Hara, ACS Appl. Mater. Interfaces, 10, 23792 (2018); https://doi.org/10.1021/acsami.8b05343
- S. Shibata, K. Sugahara, K. Kamata and M. Hara, Chem. Commun., 54, 6772 (2018); https://doi.org/10.1039/C8CC02185F
- A. Aguadero, H. Falcon, J.M. Campos-Martin, S.M. Al-Zahrani, J.L.G. Fierro and J.A. Alonso, Angew. Chem. Int. Ed. Engl., 50, 6557 (2011); https://doi.org/10.1002/anie.201007941
- C. Leal Marchena, G.A. Pecchi and L.B. Pierella, Catal. Commun., 119, 28 (2019); https://doi.org/10.1016/j.catcom.2018.10.016
- I. Jaouali, N. Moussa, M.F. Nsib and M.A. Centeno, Proceedings of 2nd Euro-Mediterranean Conference for Environmental Integration (EMCEI-2), p. 429 (2019).
- S. Shibata, K. Kamata and M. Hara, Catal. Sci. Technol., 11, 2369 (2021); https://doi.org/10.1039/D1CY00245G
- M.D. Smith, A.F. Stepan, C. Ramarao, P.E. Brennan and S.V. Ley, Chem. Commun., 2652 (2003); https://doi.org/10.1039/b308465e
- S.P. Andrews, A.F. Stepan, H. Tanaka, S.V. Ley and M.D. Smith, Adv. Synth. Catal., 347, 647 (2005); https://doi.org/10.1002/adsc.200404331
- S. Lohmann, S.P. Andrews, B.J. Burke, M.D. Smith, J.P. Atteld, H. Tanaka, K. Kaneko and S.V. Ley, Synlett, 1291 (2005); https://doi.org/10.1055/s-2005-865233
- C. Battilocchio, B.N. Bhawal, R. Chorghade, B.J. Deadman, J.M. Hawkins and S.V. Ley, Isr. J. Chem., 54, 371 (2014); https://doi.org/10.1002/ijch.201300049
- T. Dharmana and B.N. Naidu, Asian J. Chem., 34, 437 (2022); https://doi.org/10.14233/ajchem.2022.23428
- A.S. Kulkarni and R.V. Jayaram, Appl. Catal., A, 252, 225 (2003); https://doi.org/10.1016/S0926-860X(03)00417-4
- A.S. Kulkarni and R.V. Jayaram, J. Mol. Catal. Chem., 223, 107 (2004); https://doi.org/10.1016/j.molcata.2003.12.042
- D. Waffel, B. Alkan, Q. Fu, Y.T. Chen, S. Schmidt, C. Schulz, H. Wiggers, M. Muhler and B. Peng, ChemPlusChem, 84, 1155 (2019); https://doi.org/10.1002/cplu.201900429
- Y. Xue, H. Xin, W. Xie, P. Wu and X. Li, Chem. Commun., 55, 3363 (2019); https://doi.org/10.1039/C9CC00318E
- Y. Sahin, A.T. Sika-Nartey, K.E. Ercan, Y. Kocak, S. Senol, E. Ozensoy and Y.E. Türkmen, ACS Appl. Mater. Interfaces, 13, 5099 (2021); https://doi.org/10.1021/acsami.0c20490
- S. Rahmatinejad and H. Naeimi, Polyhedron, 177, 114318 (2020); https://doi.org/10.1016/j.poly.2019.114318
- Y. Zheng, R. Zhang, L. Zhang, Q. Gu and Z.A. Qiao, Angew. Chem. Int, 60, 4774 (2021); https://doi.org/10.1002/anie.202012416
- P. Granger, V.I. Parvulescu, V.I. Parvulescu and W. Prellier, Perovskites and Related Mixed Oxides, Wiley-VCH: Weinheim (2016).
- Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai and R. Amal, J. Mater. Chem. A Mater. Energy Sustain., 5, 8825 (2017); https://doi.org/10.1039/C6TA10896B
- C. Marcilly, P. Courty and B. Delmon, J. Am. Ceram. Soc., 53, 56 (1970); https://doi.org/10.1111/j.1151-2916.1970.tb12003.x
- Y. Teraoka, H. Kakebayashi, I. Moriguchi and S. Kagawa, Chem. Lett., 20, 673 (1991); https://doi.org/10.1246/cl.1991.673
- M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent, US3330697 (1967).
- M. Kakihana, J. Sol-Gel Sci. Technol., 6, 7 (1996); https://doi.org/10.1007/BF00402588
- H. Hattori and Y. Ono, Solid Acid Catalysis: From Fundamentals to Applications, CRC Press: Boca Raton (2015).
- Y. Ono and H. Hattori, Solid Base Catalysis, Springer: Berlin/ Heidelberg (2011).
- G. Busca, Chem. Rev., 107, 5366 (2007); https://doi.org/10.1021/cr068042e
- T. Okuhara, N. Mizuno and M. Misono, Adv. Catal., 41, 113 (1996); https://doi.org/10.1016/S0360-0564(08)60041-3
- K. Kamata and K. Sugahara, Catalysts, 7, 345 (2017); https://doi.org/10.3390/catal7110345
- A. Corma and H. Garcia, Chem. Rev., 103, 4307 (2003); https://doi.org/10.1021/cr030680z
- T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 105, 2329 (2005); https://doi.org/10.1021/cr050523v
- F. Cavani and J.H. Teles, ChemSusChem, 2, 508 (2009); https://doi.org/10.1002/cssc.200900020
- K. Kamata, Bull. Chem. Soc. Jpn., 88, 1017 (2015); https://doi.org/10.1246/bcsj.20150154
- N. Mizuno and K. Kamata, Coord. Chem. Rev., 255, 2358 (2011); https://doi.org/10.1016/j.ccr.2011.01.041.
- X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
- S.S. Stahl, Angew. Chem. Int. Ed., 43, 3400 (2004); https://doi.org/10.1002/anie.200300630
- I.A. Weinstock, R.E. Schreiber and R. Neumann, Chem. Rev., 118, 2680 (2018); https://doi.org/10.1021/acs.chemrev.7b00444
- S. Ishikawa and W. Ueda, Catal. Sci. Technol., 6, 617 (2016); https://doi.org/10.1039/C5CY01435B
- E. Hayashi, T. Komanoya, K. Kamata and M. Hara, ChemSusChem, 10, 654 (2017); https://doi.org/10.1002/cssc.201601443
- Q. Gao, C. Giordano and M. Antonietti, Angew. Chem. Int. Ed., 51, 11740 (2012); https://doi.org/10.1002/anie.201206542
- M.A. Vannice, Catal. Today, 123, 18 (2007); https://doi.org/10.1016/j.cattod.2007.02.002
- K. Yamaguchi and N. Mizuno, New J. Chem., 26, 972 (2002); https://doi.org/10.1039/b203262g
- T. Mitsudome, N. Nosaka, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda, Chem. Lett., 34, 1626 (2005); https://doi.org/10.1246/cl.2005.1626
- J.P. Corbet and G. Mignani, Chem. Rev., 106, 2651 (2006); https://doi.org/10.1021/cr0505268
- S.R. Chemler, D. Trauner and S.J. Danishefsky, Angew. Chem. Int. Ed., 40, 4544 (2001); https://doi.org/10.1002/1521-3773(20011217)40:24<4544::AIDANIE4544>3.0.CO;2-N
- N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995); https://doi.org/10.1021/cr00039a007
- F. Bellina, A. Carpita and R. Rossi, Synthesis, 2419 (2004); https://doi.org/10.1055/s-2004-831223
- N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 11, 513 (1981); https://doi.org/10.1080/00397918108063618
- Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada, Nature, 418, 164 (2002); https://doi.org/10.1038/nature00893
- I. Jarrige, K. Ishii, D. Matsumura, Y. Nishihata, M. Yoshida, H. Kishi, M. Taniguchi, M. Uenishi, H. Tanaka, H. Kasai and J. Mizuki, ACS Catal., 5, 1112 (2015); https://doi.org/10.1021/cs501608k
References
C.-J. Li and B.M. Trost, PNAS, 105, 13197 (2008) https://doi.org/10.1073/pnas.0804348105
R.A. Sheldon, Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
C.J. Clarke, W.-C. Tu, O. Levers, A. Brôhl and J.P. Hallett, Chem. Rev., 118, 747 (2018); https://doi.org/10.1021/acs.chemrev.7b00571
K. Kamata, Bull. Chem. Soc. Jpn., 92, 133 (2019); https://doi.org/10.1246/bcsj.20180260
V.L. Sushkevich, D. Palagin, M. Ranocchiari and J.A. van Bokhoven, Science, 356, 523 (2017); https://doi.org/10.1126/science.aam9035
S.H. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. MalerødFjeld, P.K. Vestre, W.G. Coors, A. Martínez, T. Norby, J.M. Serra and C. Kjølseth, Science, 353, 563 (2016); https://doi.org/10.1126/science.aag0274
T. Komanoya, T. Kinemura, Y. Kita, K. Kamata and M. Hara, J. Am. Chem. Soc., 139, 11493 (2017); https://doi.org/10.1021/jacs.7b04481
S. Kanai, I. Nagahara, Y. Kita, K. Kamata and M. Hara, Chem. Sci., 8, 3146 (2017); https://doi.org/10.1039/C6SC05642C
M.J. C liment, A. Corma and S. Iborra, Green Chem., 16, 516 (2014); https://doi.org/10.1039/C3GC41492B
M. Hara, K. Nakajima and K. Kamata, Sci. Technol. Adv. Mater., 16, 034903 (2015); https://doi.org/10.1088/1468-6996/16/3/034903
D.M. Alonso, S.G. Wettstein and J.A. Dumesic, Chem. Soc. Rev., 41, 8075 (2012); https://doi.org/10.1039/c2cs35188a
M. Besson, P. Gallezot and C. Pinel, Chem. Rev., 114, 1827 (2014); https://doi.org/10.1021/cr4002269
B. Cornils, W.A. Herrmann, M. Beller and R. Paciello, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Ed.: 3, Wiley-VCH: Weinheim (2017).
J. Hagen, Industrial Catalysis: A Practical Approach, Wiley-VCH: Weinheim (1999).
G. Ertl, H. Knözinger and J. Weitkamp, Handbook of Heterogeneous Catalysis, Ed. 2, Wiley-VCH: Weinheim (2008).
N. Mizuno, Modern Heterogeneous Oxidation Catalysis, Wiley-VCH: Weinheim (2009).
K. Yamaguchi and N. Mizuno, Syn. Lett., 2365 (2010); https://doi.org/10.1055/s-0030-1258565
A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara and K. Domen, Energy Environ. Sci., 3, 82 (2010); https://doi.org/10.1039/B918563A
M. Hechelski, A. Ghinet, B. Louvel, P. Dufrénoy, B. Rigo, A. Daïch and C. Waterlot, ChemSusChem, 11, 1249 (2018); https://doi.org/10.1002/cssc.201702435
S. Ishikawa, Z. Zhang and W. Ueda, ACS Catal., 8, 2935 (2018); https://doi.org/10.1021/acscatal.7b02244
N. Mizuno, K. Yamaguchi and K. Kamata, Catal. Surv. Asia, 15, 68 (2011); https://doi.org/10.1007/s10563-011-9111-2
A. Enferadi-Kerenkan, T.-O. Do and S. Kaliaguine, Catal. Sci. Technol., 8, 2257 (2018); https://doi.org/10.1039/C8CY00281A
C. Martínez and A. Corma, Coord. Chem. Rev., 255, 1558 (2011); https://doi.org/10.1016/j.ccr.2011.03.014
J. Liang, Z. Liang, R. Zou and Y. Zhao, Adv. Mater., 29, 1701139 (2017); https://doi.org/10.1002/adma.201701139
K. Kaneda and T. Mizugaki, ACS Catal., 7, 920 (2017); https://doi.org/10.1021/acscatal.6b02585
D. Astruc, F. Lu and J.R. Aranzaes, Angew. Chem. Int. Ed. Engl., 44, 7852 (2005); https://doi.org/10.1002/anie.200500766
A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Chem. Commun., 48, 11275 (2012); https://doi.org/10.1039/c2cc34329k
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem. Soc. Rev., 43, 6011 (2014); https://doi.org/10.1039/C4CS00094C
R. Akiyama and S. Kobayashi, Chem. Rev., 109, 594 (2009); https://doi.org/10.1021/cr800529d
Q. Sun, Z. Dai, X. Meng and F.-S. Xiao, Chem. Soc. Rev., 44, 6018 (2015); https://doi.org/10.1039/C5CS00198F
D. Wang and D. Astruc, Coord. Chem. Rev., 257, 2317 (2013); https://doi.org/10.1016/j.ccr.2013.03.032
K. Nakajima and M. Hara, ACS Catal., 2, 1296 (2012); https://doi.org/10.1021/cs300103k
Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012); https://doi.org/10.1002/anie.201101182
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao and F. Ciucci, Chem. Rev., 115, 9869 (2015); https://doi.org/10.1021/acs.chemrev.5b00073
F. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012); https://doi.org/10.1039/c1cs15228a
D.U. Lee, P. Xu, Z.P. Cano, A.G. Kashkooli, M.G. Park and Z. Chen, J. Mater. Chem. A Mater. Energy Sustain., 4, 7107 (2016); https://doi.org/10.1039/C6TA00173D
X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong and Z. Liu, ACS Catal., 5, 4643 (2015); https://doi.org/10.1021/acscatal.5b00524
P. Tan, M. Liu, Z. Shao and M. Ni, Adv. Energy Mater., 7, 1602674 (2017); https://doi.org/10.1002/aenm.201602674
S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri and H. Alamdari, Chem. Rev., 114, 10292 (2014); https://doi.org/10.1021/cr500032a
N. Labhasetwar, G. Saravanan, S.K. Megarajan, N. Manwar, R. Khobragade, P. Doggali and F. Grasset, Sci. Technol. Adv. Mater., 16, 036002 (2015); https://doi.org/10.1088/1468-6996/16/3/036002
J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao and J. Li, ACS Catal., 4, 2917 (2014); https://doi.org/10.1021/cs500606g
F. Polo-Garzon and Z. Wu, J. Mater. Chem. A Mater. Energy Sustain., 6, 2877 (2018); https://doi.org/10.1039/C7TA10591F
H. Zhu, P. Zhang and S. Dai, ACS Catal., 5, 6370 (2015); https://doi.org/10.1021/acscatal.5b01667
M. Konsolakis, ACS Catal., 5, 6397 (2015); https://doi.org/10.1021/acscatal.5b01605
E.A.R. Assirey, Saudi Pharm. J., 27, 817 (2019); https://doi.org/10.1016/j.jsps.2019.05.003
P. Yadav, S. Yadav and R. Tomar, ChemistrySelect, 6, 12947 (2021); https://doi.org/10.1002/slct.202102292
E. Grabowska, Appl. Catal. B, 186, 97 (2016); https://doi.org/10.1016/j.apcatb.2015.12.035
W. Wang, M.O. Tadé and Z. Shao, Chem. Soc. Rev., 44, 5371 (2015); https://doi.org/10.1039/C5CS00113G
M. Kubicek, A.H. Bork and J.L.M. Rupp, J. Mater. Chem. A Mater. Energy Sustain., 5, 11983 (2017); https://doi.org/10.1039/C7TA00987A
P. Chandra, ChemistrySelect, 6, 7557 (2021); https://doi.org/10.1002/slct.202101434
G.F. Teixeira, E. Silva Junior, R. Vilela, M.A. Zaghete and F. Colmati, Catalysts, 9, 721 (2019); https://doi.org/10.3390/catal9090721
H. Kleineberg, M. Eisenacher, H. Lange, H. Strutz and R. Palkovits, Catal. Sci. Technol., 6, 6057 (2016); https://doi.org/10.1039/C5CY01479D
A. Takagaki, M. Sugisawa, D. Lu, J.N. Kondo, M. Hara, K. Domen and S. Hayashi, J. Am. Chem. Soc., 125, 5479 (2003); https://doi.org/10.1021/ja034085q
S. Yamaguchi, T. Okuwa, H. Wada, H. Yamaura and H. Yahiro, Res. Chem. Intermed., 41, 9551 (2015); https://doi.org/10.1007/s11164-015-1980-y
N. Pal, M. Paul and A. Bhaumik, Appl. Catal. A, 393, 153 (2011); https://doi.org/10.1016/j.apcata.2010.11.037
S. Ray, P. Das, B. Banerjee, A. Bhaumik and C. Mukhopadhyay, ChemPlusChem, 80, 731 (2015); https://doi.org/10.1002/cplu.201402405
H. Singh and J.K. Rajput, J. Mater. Sci., 53, 3163 (2018); https://doi.org/10.1007/s10853-017-1790-2
R. Mistri, D. Das, J. Llorca, M. Dominguez, T.K. Mandal, P. Mohanty, B.C. Ray and A. Gayen, RSC Adv., 6, 4469 (2016); https://doi.org/10.1039/C5RA22592B
A.A. Ansari, S.F. Adil, M. Alam, N. Ahmad, M.E. Assal, J.P. Labis and A. Alwarthan, Sci. Rep., 10, 15012 (2020); https://doi.org/10.1038/s41598-020-71869-z
S.J. Singh and R.V. Jayaram, Catal. Commun., 10, 2004 (2009); https://doi.org/10.1016/j.catcom.2009.07.018
C. Saux, C. Leal Marchena, R. Dinamarca, G. Pecchi and L. Pierella, Catal. Commun., 76, 58 (2016); https://doi.org/10.1016/j.catcom.2015.12.023
C. Liu, Z. Zhao, X. Yang, X. Ye and Y. Wu, Chin. J. Chem., 14, 516 (1996).
C. Liu, Z. Zhao, X. Yang, X. Ye and Y. Wu, Chem. Commun., 1019 (1996); https://doi.org/10.1039/CC9960001019
S. Saha and S.B. Abd Hamid, RSC Adv., 7, 9914 (2017); https://doi.org/10.1039/C6RA26370D
C.D. Evans, S.A. Kondrat, P.J. Smith, T.D. Manning, P.J. Miedziak, G.L. Brett, R.D. Armstrong, J.K. Bartley, S.H. Taylor, M.J. Rosseinsky and G.J. Hutchings, Faraday Discuss., 188, 427 (2016); https://doi.org/10.1039/C5FD00187K
I.B. Adilina, T. Hara, N. Ichikuni, N. Kumada and S. Shimazu, Bull. Chem. Soc. Jpn., 86, 146 (2013); https://doi.org/10.1246/bcsj.20120215
A. Rahmani and J. Saari, J. Nanostruct., 6, 301 (2016); https://doi.org/10.22052/JNS.2016.34270
S. Sugunan and V. Meera, Indian J. Chem., 34A, 984 (1995).
S. Kawasaki, K. Kamata and M. Hara, ChemCatChem, 8, 3247 (2016); https://doi.org/10.1002/cctc.201600613
K. Sugahara, K. Kamata, S. Muratsugu and M. Hara, ACS Omega, 2, 1608 (2017); https://doi.org/10.1021/acsomega.7b00146
K. Kamata, K. Sugahara, Y. Kato, S. Muratsugu, Y. Kumagai, F. Oba and M. Hara, ACS Appl. Mater. Interfaces, 10, 23792 (2018); https://doi.org/10.1021/acsami.8b05343
S. Shibata, K. Sugahara, K. Kamata and M. Hara, Chem. Commun., 54, 6772 (2018); https://doi.org/10.1039/C8CC02185F
A. Aguadero, H. Falcon, J.M. Campos-Martin, S.M. Al-Zahrani, J.L.G. Fierro and J.A. Alonso, Angew. Chem. Int. Ed. Engl., 50, 6557 (2011); https://doi.org/10.1002/anie.201007941
C. Leal Marchena, G.A. Pecchi and L.B. Pierella, Catal. Commun., 119, 28 (2019); https://doi.org/10.1016/j.catcom.2018.10.016
I. Jaouali, N. Moussa, M.F. Nsib and M.A. Centeno, Proceedings of 2nd Euro-Mediterranean Conference for Environmental Integration (EMCEI-2), p. 429 (2019).
S. Shibata, K. Kamata and M. Hara, Catal. Sci. Technol., 11, 2369 (2021); https://doi.org/10.1039/D1CY00245G
M.D. Smith, A.F. Stepan, C. Ramarao, P.E. Brennan and S.V. Ley, Chem. Commun., 2652 (2003); https://doi.org/10.1039/b308465e
S.P. Andrews, A.F. Stepan, H. Tanaka, S.V. Ley and M.D. Smith, Adv. Synth. Catal., 347, 647 (2005); https://doi.org/10.1002/adsc.200404331
S. Lohmann, S.P. Andrews, B.J. Burke, M.D. Smith, J.P. Atteld, H. Tanaka, K. Kaneko and S.V. Ley, Synlett, 1291 (2005); https://doi.org/10.1055/s-2005-865233
C. Battilocchio, B.N. Bhawal, R. Chorghade, B.J. Deadman, J.M. Hawkins and S.V. Ley, Isr. J. Chem., 54, 371 (2014); https://doi.org/10.1002/ijch.201300049
T. Dharmana and B.N. Naidu, Asian J. Chem., 34, 437 (2022); https://doi.org/10.14233/ajchem.2022.23428
A.S. Kulkarni and R.V. Jayaram, Appl. Catal., A, 252, 225 (2003); https://doi.org/10.1016/S0926-860X(03)00417-4
A.S. Kulkarni and R.V. Jayaram, J. Mol. Catal. Chem., 223, 107 (2004); https://doi.org/10.1016/j.molcata.2003.12.042
D. Waffel, B. Alkan, Q. Fu, Y.T. Chen, S. Schmidt, C. Schulz, H. Wiggers, M. Muhler and B. Peng, ChemPlusChem, 84, 1155 (2019); https://doi.org/10.1002/cplu.201900429
Y. Xue, H. Xin, W. Xie, P. Wu and X. Li, Chem. Commun., 55, 3363 (2019); https://doi.org/10.1039/C9CC00318E
Y. Sahin, A.T. Sika-Nartey, K.E. Ercan, Y. Kocak, S. Senol, E. Ozensoy and Y.E. Türkmen, ACS Appl. Mater. Interfaces, 13, 5099 (2021); https://doi.org/10.1021/acsami.0c20490
S. Rahmatinejad and H. Naeimi, Polyhedron, 177, 114318 (2020); https://doi.org/10.1016/j.poly.2019.114318
Y. Zheng, R. Zhang, L. Zhang, Q. Gu and Z.A. Qiao, Angew. Chem. Int, 60, 4774 (2021); https://doi.org/10.1002/anie.202012416
P. Granger, V.I. Parvulescu, V.I. Parvulescu and W. Prellier, Perovskites and Related Mixed Oxides, Wiley-VCH: Weinheim (2016).
Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai and R. Amal, J. Mater. Chem. A Mater. Energy Sustain., 5, 8825 (2017); https://doi.org/10.1039/C6TA10896B
C. Marcilly, P. Courty and B. Delmon, J. Am. Ceram. Soc., 53, 56 (1970); https://doi.org/10.1111/j.1151-2916.1970.tb12003.x
Y. Teraoka, H. Kakebayashi, I. Moriguchi and S. Kagawa, Chem. Lett., 20, 673 (1991); https://doi.org/10.1246/cl.1991.673
M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent, US3330697 (1967).
M. Kakihana, J. Sol-Gel Sci. Technol., 6, 7 (1996); https://doi.org/10.1007/BF00402588
H. Hattori and Y. Ono, Solid Acid Catalysis: From Fundamentals to Applications, CRC Press: Boca Raton (2015).
Y. Ono and H. Hattori, Solid Base Catalysis, Springer: Berlin/ Heidelberg (2011).
G. Busca, Chem. Rev., 107, 5366 (2007); https://doi.org/10.1021/cr068042e
T. Okuhara, N. Mizuno and M. Misono, Adv. Catal., 41, 113 (1996); https://doi.org/10.1016/S0360-0564(08)60041-3
K. Kamata and K. Sugahara, Catalysts, 7, 345 (2017); https://doi.org/10.3390/catal7110345
A. Corma and H. Garcia, Chem. Rev., 103, 4307 (2003); https://doi.org/10.1021/cr030680z
T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 105, 2329 (2005); https://doi.org/10.1021/cr050523v
F. Cavani and J.H. Teles, ChemSusChem, 2, 508 (2009); https://doi.org/10.1002/cssc.200900020
K. Kamata, Bull. Chem. Soc. Jpn., 88, 1017 (2015); https://doi.org/10.1246/bcsj.20150154
N. Mizuno and K. Kamata, Coord. Chem. Rev., 255, 2358 (2011); https://doi.org/10.1016/j.ccr.2011.01.041.
X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
S.S. Stahl, Angew. Chem. Int. Ed., 43, 3400 (2004); https://doi.org/10.1002/anie.200300630
I.A. Weinstock, R.E. Schreiber and R. Neumann, Chem. Rev., 118, 2680 (2018); https://doi.org/10.1021/acs.chemrev.7b00444
S. Ishikawa and W. Ueda, Catal. Sci. Technol., 6, 617 (2016); https://doi.org/10.1039/C5CY01435B
E. Hayashi, T. Komanoya, K. Kamata and M. Hara, ChemSusChem, 10, 654 (2017); https://doi.org/10.1002/cssc.201601443
Q. Gao, C. Giordano and M. Antonietti, Angew. Chem. Int. Ed., 51, 11740 (2012); https://doi.org/10.1002/anie.201206542
M.A. Vannice, Catal. Today, 123, 18 (2007); https://doi.org/10.1016/j.cattod.2007.02.002
K. Yamaguchi and N. Mizuno, New J. Chem., 26, 972 (2002); https://doi.org/10.1039/b203262g
T. Mitsudome, N. Nosaka, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda, Chem. Lett., 34, 1626 (2005); https://doi.org/10.1246/cl.2005.1626
J.P. Corbet and G. Mignani, Chem. Rev., 106, 2651 (2006); https://doi.org/10.1021/cr0505268
S.R. Chemler, D. Trauner and S.J. Danishefsky, Angew. Chem. Int. Ed., 40, 4544 (2001); https://doi.org/10.1002/1521-3773(20011217)40:24<4544::AIDANIE4544>3.0.CO;2-N
N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995); https://doi.org/10.1021/cr00039a007
F. Bellina, A. Carpita and R. Rossi, Synthesis, 2419 (2004); https://doi.org/10.1055/s-2004-831223
N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 11, 513 (1981); https://doi.org/10.1080/00397918108063618
Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada, Nature, 418, 164 (2002); https://doi.org/10.1038/nature00893
I. Jarrige, K. Ishii, D. Matsumura, Y. Nishihata, M. Yoshida, H. Kishi, M. Taniguchi, M. Uenishi, H. Tanaka, H. Kasai and J. Mizuki, ACS Catal., 5, 1112 (2015); https://doi.org/10.1021/cs501608k