Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rhodium(III) and Platinum(II) Complexes of Azamacrocycle: Synthesis, Characterization and Antimicrobial Evaluation
Corresponding Author(s) : Ismail M.M. Rahman
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
A dihydroperchlorate salt of octamethyl derivative of 14-membered tetraazamacrocycle, Me8[14]diene·2HClO4 (L·2HClO4), was formed by the condensation of 1,2-diamino propane with acetone in the presence of a quantitative amount of perchloric acid, which on extraction with chloroform at pH above 12 yielded free ligand (L). The interaction of rhodium(III) trichloride trihydrate and platinum(II) chloride with free ligand L produced six-coordinated octahedral orange-red complex, cis-[RhLCl2]Cl and four-coordinated square-planar yellow complex, [PtL]Cl2, respectively. Axial substitution reactions on [RhLCl2]Cl with KX (X = NO3, Br or I) and NaNO2 afforded six-coordinated deep brown products [RhLY2]Y (Y= NO3, Br, I or NO2). The ligand and metal complexes were characterized based on analytical, molar conductivity, spectroscopic and magnetochemical data. The antimicrobial activities of the concerned ligand and its complexes have been explored against some selected bacteria and fungi.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.M. Kolthoff, Anal. Chem., 51, 1 (1979); https://doi.org/10.1021/ac50041a001
- N.S. Al-Radadi, S.M. Al-Ashqar and M.M. Mostafa, J. Incl. Phenom. Macro., 69, 157 (2011); https://doi.org/10.1007/s10847-010-9826-0
- A. Chaudhary, N. Bansal, A. Gajraj and R.V. Singh, J. Inorg. Biochem., 96, 393 (2003); https://doi.org/10.1016/S0162-0134(03)00157-0
- N. Raman, J. Joseph, A.S.K. Velan and C. Pothiraj, Mycobiology, 34, 214 (2006); https://doi.org/10.4489/MYCO.2006.34.4.214
- D.S. Lamani, S.G. Badiger, K.R.V. Reddy and H.S.B. Naik, Nucleos. Nucleot. Nucl., 37, 498 (2018); https://doi.org/10.1080/15257770.2018.1498515
- S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005
- P.V. Bernhardt and P.C. Sharpe, Inorg. Chem., 39, 4123 (2000); https://doi.org/10.1021/ic000315f
- K. Xu, N. Xu, B. Zhang, W. Tang, Y. Ding and A. Hu, Dalton Trans., 49, 8927 (2020); https://doi.org/10.1039/D0DT00248H
- M. Vicente, R. Bastida, C. Lodeiro, A. Macías, A.J. Parola, L. Valencia and S.E. Spey, Inorg. Chem., 42, 6768 (2003); https://doi.org/10.1021/ic034245z
- N. Nishat and M.M. Haq, Synth. React. Inorg. Met.-Org. Chem., 34, 335 (2004); https://doi.org/10.1081/SIM-120028305
- T.G. Roy, S.K.S. Hazari, B. Dey, B.C. Nath, A. Dutta, F. Olbrich and D. Rehder, Inorg. Chim. Acta, 371, 63 (2011); https://doi.org/10.1016/j.ica.2011.03.011
- T.G. Roy, S.K.S. Hazari, B.K. Dey, A. Nath, D.I. Kim, E.H. Kim and Y.C. Park, J. Incl. Phenom. Macrocycl. Chem., 58, 249 (2007); https://doi.org/10.1007/s10847-006-9150-x
- M. Shakir, Y. Azim, H.T.N. Chishti, N. Begum, P. Chingsubam and M.Y. Siddiqi, J. Braz. Chem. Soc., 17, 272 (2006); https://doi.org/10.1590/S0103-50532006000200009
- F.B. Biswas, S. Rabi, K. Barua, T.G. Roy, D. Palit and B.K. Dey, Eur. Sci. J., 14, 330 (2018); https://doi.org/10.19044/esj.2018.v14n24p330
- T.G. Roy, S.K.S. Hazari, K.K. Barua, D.I. Kim, Y.C. Park and E.R.T. Tiekink, Appl. Organomet. Chem., 22, 637 (2008); https://doi.org/10.1002/aoc.1451
- T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, F. Olbrich and D. Rehder, Inorg. Chem., 46, 5372 (2007); https://doi.org/10.1021/ic061700t
- T.G. Roy, S.K.S. Hazari, H.A. Miah, S.K.D. Gupta, P.G. Roy, U. Behrens and D. Rehder, Inorg. Chim. Acta, 415, 124 (2014); https://doi.org/10.1016/j.ica.2014.02.041
- M.S. Alam, S. Rabi, M.M. Rahman, A. Baidya, M. Debi and T.G. Roy, J. Chem. Sci., 130, 35 (2018); https://doi.org/10.1007/s12039-018-1438-z
- T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Chakraborti and E.R.T. Tiekink, Met. Based Drugs, 6, 345 (1999); https://doi.org/10.1155/MBD.1999.345
- S.K.S. Hazari, T.G. Roy, B.K. Dey, S. Chakrabarti and E.R.T. Tiekink, Z. Krist-New Cryst. St., 214, 51 (1999); https://doi.org/10.1515/ncrs-1999-0129
- T.M. Hood, M.R. Gyton and A.B. Chaplin, Dalton Trans., 49, 2077 (2020); https://doi.org/10.1039/C9DT04474D
- S. Chandra, M. Tyagi and S. Agrawal, J. Saudi Chem. Soc., 15, 49 (2011); https://doi.org/10.1016/j.jscs.2010.09.005
- M. Shakir, O.S.M. Nasman, A.K. Mohamed and S.P. Varkey, Synth. React. Inorg. Met.-Org. Chem., 25, 1671 (1995); https://doi.org/10.1080/15533179508014690
- S.J. Swamy, B.V. Pratap, P. Someshwar, K. Suresh and D. Nagaraju, J. Chem. Res., 2005, 313 (2005); https://doi.org/10.3184/0308234054323986
- T.M. Hood, B. Leforestier, M.R. Gyton and A.B. Chaplin, Inorg. Chem., 58, 7593 (2019); https://doi.org/10.1021/acs.inorgchem.9b00957
- E.J. Bounsall and S.R. Koprich, Can. J. Chem., 48, 1481 (1970); https://doi.org/10.1139/v70-243
- P.K. Bhattacharya, J. Chem. Soc. Dalton, 810 (1980); https://doi.org/10.1039/dt9800000810
- A. Dei and L. Pardi, Inorg. Chim. Acta, 181, 3 (1991); https://doi.org/10.1016/S0020-1693(00)85251-2
- G.J. Grant, D.F. Galas, M.W. Jones, K.D. Loveday, W.T. Pennington, G.L. Schimek, C.T. Eagle and D.G. VanDerveer, Inorg. Chem., 37, 5299 (1998); https://doi.org/10.1021/ic9715714
- M. Tyagi, S. Chandra and S.K. Choudhary, J. Chem. Pharm. Res., 3, 56 (2011).
- S. Rani, S. Kumar and S. Chandra, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 40, 940 (2010); https://doi.org/10.1080/15533174.2010.522663
- A.E.-M.M. Ramadan and T.I. El-Emary, Transition Met. Chem., 23, 491 (1998); https://doi.org/10.1023/A:1006988529965
- R. Bembi, S. M. Sondhi, A. K. Singh, A. K. Jhanji, T. G. Roy, J.W. Lown and R.G. Ball, Bull. Chem. Soc. Jpn., 62, 3701 (1989); https://doi.org/10.1246/bcsj.62.3701
- L.G. Warner and D.H. Busch, J. Am. Chem. Soc., 91, 4092 (1969); https://doi.org/10.1021/ja01043a014
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: Hoboken, NJ (2007).
- M.J. Cleare and W.P. Griffith, J. Chem. Soc. A, 1144 (1967); https://doi.org/10.1039/j19670001144
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1986)
- F.B. Biswas, T.G. Roy, M.A. Rahman and T.B. Emran, Asian Pac. J. Trop. Med., 7, S534 (2014); https://doi.org/10.1016/S1995-7645(14)60286-8
References
I.M. Kolthoff, Anal. Chem., 51, 1 (1979); https://doi.org/10.1021/ac50041a001
N.S. Al-Radadi, S.M. Al-Ashqar and M.M. Mostafa, J. Incl. Phenom. Macro., 69, 157 (2011); https://doi.org/10.1007/s10847-010-9826-0
A. Chaudhary, N. Bansal, A. Gajraj and R.V. Singh, J. Inorg. Biochem., 96, 393 (2003); https://doi.org/10.1016/S0162-0134(03)00157-0
N. Raman, J. Joseph, A.S.K. Velan and C. Pothiraj, Mycobiology, 34, 214 (2006); https://doi.org/10.4489/MYCO.2006.34.4.214
D.S. Lamani, S.G. Badiger, K.R.V. Reddy and H.S.B. Naik, Nucleos. Nucleot. Nucl., 37, 498 (2018); https://doi.org/10.1080/15257770.2018.1498515
S. Ali, V. Singh, P. Jain and V. Tripathi, J. Saudi Chem. Soc., 23, 52 (2019); https://doi.org/10.1016/j.jscs.2018.04.005
P.V. Bernhardt and P.C. Sharpe, Inorg. Chem., 39, 4123 (2000); https://doi.org/10.1021/ic000315f
K. Xu, N. Xu, B. Zhang, W. Tang, Y. Ding and A. Hu, Dalton Trans., 49, 8927 (2020); https://doi.org/10.1039/D0DT00248H
M. Vicente, R. Bastida, C. Lodeiro, A. Macías, A.J. Parola, L. Valencia and S.E. Spey, Inorg. Chem., 42, 6768 (2003); https://doi.org/10.1021/ic034245z
N. Nishat and M.M. Haq, Synth. React. Inorg. Met.-Org. Chem., 34, 335 (2004); https://doi.org/10.1081/SIM-120028305
T.G. Roy, S.K.S. Hazari, B. Dey, B.C. Nath, A. Dutta, F. Olbrich and D. Rehder, Inorg. Chim. Acta, 371, 63 (2011); https://doi.org/10.1016/j.ica.2011.03.011
T.G. Roy, S.K.S. Hazari, B.K. Dey, A. Nath, D.I. Kim, E.H. Kim and Y.C. Park, J. Incl. Phenom. Macrocycl. Chem., 58, 249 (2007); https://doi.org/10.1007/s10847-006-9150-x
M. Shakir, Y. Azim, H.T.N. Chishti, N. Begum, P. Chingsubam and M.Y. Siddiqi, J. Braz. Chem. Soc., 17, 272 (2006); https://doi.org/10.1590/S0103-50532006000200009
F.B. Biswas, S. Rabi, K. Barua, T.G. Roy, D. Palit and B.K. Dey, Eur. Sci. J., 14, 330 (2018); https://doi.org/10.19044/esj.2018.v14n24p330
T.G. Roy, S.K.S. Hazari, K.K. Barua, D.I. Kim, Y.C. Park and E.R.T. Tiekink, Appl. Organomet. Chem., 22, 637 (2008); https://doi.org/10.1002/aoc.1451
T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, F. Olbrich and D. Rehder, Inorg. Chem., 46, 5372 (2007); https://doi.org/10.1021/ic061700t
T.G. Roy, S.K.S. Hazari, H.A. Miah, S.K.D. Gupta, P.G. Roy, U. Behrens and D. Rehder, Inorg. Chim. Acta, 415, 124 (2014); https://doi.org/10.1016/j.ica.2014.02.041
M.S. Alam, S. Rabi, M.M. Rahman, A. Baidya, M. Debi and T.G. Roy, J. Chem. Sci., 130, 35 (2018); https://doi.org/10.1007/s12039-018-1438-z
T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Chakraborti and E.R.T. Tiekink, Met. Based Drugs, 6, 345 (1999); https://doi.org/10.1155/MBD.1999.345
S.K.S. Hazari, T.G. Roy, B.K. Dey, S. Chakrabarti and E.R.T. Tiekink, Z. Krist-New Cryst. St., 214, 51 (1999); https://doi.org/10.1515/ncrs-1999-0129
T.M. Hood, M.R. Gyton and A.B. Chaplin, Dalton Trans., 49, 2077 (2020); https://doi.org/10.1039/C9DT04474D
S. Chandra, M. Tyagi and S. Agrawal, J. Saudi Chem. Soc., 15, 49 (2011); https://doi.org/10.1016/j.jscs.2010.09.005
M. Shakir, O.S.M. Nasman, A.K. Mohamed and S.P. Varkey, Synth. React. Inorg. Met.-Org. Chem., 25, 1671 (1995); https://doi.org/10.1080/15533179508014690
S.J. Swamy, B.V. Pratap, P. Someshwar, K. Suresh and D. Nagaraju, J. Chem. Res., 2005, 313 (2005); https://doi.org/10.3184/0308234054323986
T.M. Hood, B. Leforestier, M.R. Gyton and A.B. Chaplin, Inorg. Chem., 58, 7593 (2019); https://doi.org/10.1021/acs.inorgchem.9b00957
E.J. Bounsall and S.R. Koprich, Can. J. Chem., 48, 1481 (1970); https://doi.org/10.1139/v70-243
P.K. Bhattacharya, J. Chem. Soc. Dalton, 810 (1980); https://doi.org/10.1039/dt9800000810
A. Dei and L. Pardi, Inorg. Chim. Acta, 181, 3 (1991); https://doi.org/10.1016/S0020-1693(00)85251-2
G.J. Grant, D.F. Galas, M.W. Jones, K.D. Loveday, W.T. Pennington, G.L. Schimek, C.T. Eagle and D.G. VanDerveer, Inorg. Chem., 37, 5299 (1998); https://doi.org/10.1021/ic9715714
M. Tyagi, S. Chandra and S.K. Choudhary, J. Chem. Pharm. Res., 3, 56 (2011).
S. Rani, S. Kumar and S. Chandra, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 40, 940 (2010); https://doi.org/10.1080/15533174.2010.522663
A.E.-M.M. Ramadan and T.I. El-Emary, Transition Met. Chem., 23, 491 (1998); https://doi.org/10.1023/A:1006988529965
R. Bembi, S. M. Sondhi, A. K. Singh, A. K. Jhanji, T. G. Roy, J.W. Lown and R.G. Ball, Bull. Chem. Soc. Jpn., 62, 3701 (1989); https://doi.org/10.1246/bcsj.62.3701
L.G. Warner and D.H. Busch, J. Am. Chem. Soc., 91, 4092 (1969); https://doi.org/10.1021/ja01043a014
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: Hoboken, NJ (2007).
M.J. Cleare and W.P. Griffith, J. Chem. Soc. A, 1144 (1967); https://doi.org/10.1039/j19670001144
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam (1986)
F.B. Biswas, T.G. Roy, M.A. Rahman and T.B. Emran, Asian Pac. J. Trop. Med., 7, S534 (2014); https://doi.org/10.1016/S1995-7645(14)60286-8