Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Zinc Oxide Nanoparticles Employing Costus igneus Leaf Extract and their Antibacterial, Antifungal and Anticarcinogenic Activities
Corresponding Author(s) : K. Neyvasagam
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
An eco-friendly environment concerning the synthesis of nanoparticles from medicinal plants, free off or minimal usage of toxic chemicals is a requisite in the research avenues. Present study describes an environment-friendly green synthesis of ZnO nanoparticles acquired from leaf extracts of Costus igneus medicinal plant. The formation of ZnO with hexagonal Wurtzite structure is confirmed by XRD analysis and an average crystallite size was estimated as 30 nm. The UV absorbance investigation shows that the optical band gap value of ZnO nanoparticles is 3.25 eV. The ZnO nanoparticles smooth surface morphology, which was observed in SEM investigation. The EDAX study proved the occurrence of oxygen and zinc in the green synthesised nanoparticle. Effective antibacterial inhibition activity was observed against human bacterial species of (E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis) and then human fungal (Aspergillus niger, Aspergillus flavus and Oidium caricae). The cytotoxicity activity of breast cancer cells (MCF7) of IC50 was calculated as 59.14 μg/mL. Thus, the analysis of feasible herbal-based ZnO nanoparticles from Costus igneus leaf with significant repercussions can be exploited in the application of nanotechnology industries, biomedical and pharmaceutical drug preparations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Belkhaoui, N. Mzabi, H. Smaoui and P. Daniel, Results Phys., 12, 1686 (2019); https://doi.org/10.1016/j.rinp.2019.01.085
- A. Zankat, H. Boricha, S. Solanki, K. Sagapariya, M. Gal, V.S. Vadgama, P.S. Solanki, N.A. Shah and D.D. Pandya, Mater. Today Proc., 17, 1 (2019); https://doi.org/10.1016/j.matpr.2019.06.394
- V.S. Bhati, M. Hojamberdiev and M. Kumar, Energy Rep., 6, 46 (2020); https://doi.org/10.1016/j.egyr.2019.08.070
- N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo and K.H. Choi, Curr. Appl. Phys., 13, 90 (2013); https://doi.org/10.1016/j.cap.2012.06.017
- S.S. Mousavi, B. Sajad and M.H. Majlesara, Mater. Des., 162, 249 (2019); https://doi.org/10.1016/j.matdes.2018.11.037
- K. Charipar, H. Kim, A. Piqué and N. Charipar, Nanomaterials, 10, 1648 (2020); https://doi.org/10.3390/nano10091648
- R. Shashanka, H. Esgin, V.M. Yilmaz and Y. Caglar, J. Sci.: Adv. Mater. Devices, 5, 185 (2020); https://doi.org/10.1016/j.jsamd.2020.04.005
- A. Becheri, M. Dürr, P. Lo Nostro and P. Baglioni, J. Nanopart. Res., 10, 679 (2008); https://doi.org/10.1007/s11051-007-9318-3
- M.S. Yadav, N. Singh and A. Kumar, J. Mater. Sci. Mater. Electron., 29, 6853 (2018); https://doi.org/10.1007/s10854-018-8672-5
- G. Sundaraselvan and S.D. Quine, J. Nanosci. Technol., 3, 289 (2017).
- L.F.A. Raj and E. Jayalakshmy, Orient. J. Chem., 31, 51 (2015); https://doi.org/10.13005/ojc/310105
- S.K. Chaudhuri and L. Malodia, Appl. Nanosci., 7, 501 (2017); https://doi.org/10.1007/s13204-017-0586-7
- P. Ramesh, A. Rajendran and M. Meenakshisundaram, J. Nanosci. Nanotechnol., 2, 41 (2014).
- M.S. Geetha, H. Nagabhushana and H.N. Shivananjaiah, Mater. Today Proc., 5, 22328 (2018); https://doi.org/10.1016/j.matpr.2018.06.599
- H. Umar, D. Kavaz and N. Rizaner, Int. J. Nanomedicine, 14, 87 (2018); https://doi.org/10.2147/IJN.S186888
- G. Sangeetha, S. Rajeshwari and R. Venckatesh, Mater. Res. Bull., 46, 2560 (2011); https://doi.org/10.1016/j.materresbull.2011.07.046
- G. Bhumi and N. Savithramma, Int. J. Drug Dev. Res., 6, 208 (2014).
- R.K. Shah, F. Boruah and N. Parween, Int. J. Curr. Microbiol. Appl. Sci., 4, 444 (2015).
- H. Abdul Salam, R. Sivaraj and R. Venckatesh, Mater. Lett., 131, 16 (2014); https://doi.org/10.1016/j.matlet.2014.05.033
- L. Fu and Z. Fu, Ceram. Int., 41, 2492 (2015); https://doi.org/10.1016/j.ceramint.2014.10.069
- M. Sundrarajan, S. Ambika and K. Bharathi, Adv. Powder Technol., 26, 1294 (2015); https://doi.org/10.1016/j.apt.2015.07.001
- R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
- C. Shiny, A. Saxena and S.P. Gupta, Int. J. Pharm. Biomed. Res., 4, 97 (2013).
- K. Guruviah, S.K. Annamalai, A. Ramaswamy, C. Sivasankaran, S. Ramasamy, H. Barabadi and M. Saravanan, Nanomed. J., 7, 272 (2020); https://doi.org/10.22038/nmj.2020.07.00003
- J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan and S.I. Hong, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 015008 (2018); https://doi.org/10.1088/2043-6254/aaa6f1
- S. Azizi, M.B. Ahmad, F. Namvar and R. Mohamad, Mater. Lett., 116, 275 (2014); https://doi.org/10.1016/j.matlet.2013.11.038
- J. Santhoshkumar, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technologies, 3, 459 (2017); https://doi.org/10.1016/j.reffit.2017.05.001
- U.R. Shwetha, M.S. Latha, C.R. Rajith Kumar, M.S. Kiran and V.S. Betageri, J. Inorg. Organomet. Polym. Mater., 30, 4876 (2020); https://doi.org/10.1007/s10904-020-01575-w
- H.M. Yusof, R. Mohamad, U.H. Zaidan and N.A.A. Rahman, J. Anim. Sci. Biotechnol., 10, 57 (2019); https://doi.org/10.1186/s40104-019-0368-z
- A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan and D. Mohamad, Nano-Micro Lett., 7, 219 (2015); https://doi.org/10.1007/s40820-015-0040-x
- S.H.S. Dananjaya, R.S. Kumar, M. Yang, C. Nikapitiya, J. Lee and M. De Zoysa, Int. J. Biol. Macromol., 108, 1281 (2018); https://doi.org/10.1016/j.ijbiomac.2017.11.046
- P. Rajiv, S. Rajeshwari and R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 384 (2013); https://doi.org/10.1016/j.saa.2013.04.072
- D. Selvakumari, R. Deepa, V. Mahalakshmi, P. Subhashini and N. Lakshminarayan, ARPN J. Eng. Appl. Sci, 10, 5418 (2015).
References
C. Belkhaoui, N. Mzabi, H. Smaoui and P. Daniel, Results Phys., 12, 1686 (2019); https://doi.org/10.1016/j.rinp.2019.01.085
A. Zankat, H. Boricha, S. Solanki, K. Sagapariya, M. Gal, V.S. Vadgama, P.S. Solanki, N.A. Shah and D.D. Pandya, Mater. Today Proc., 17, 1 (2019); https://doi.org/10.1016/j.matpr.2019.06.394
V.S. Bhati, M. Hojamberdiev and M. Kumar, Energy Rep., 6, 46 (2020); https://doi.org/10.1016/j.egyr.2019.08.070
N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo and K.H. Choi, Curr. Appl. Phys., 13, 90 (2013); https://doi.org/10.1016/j.cap.2012.06.017
S.S. Mousavi, B. Sajad and M.H. Majlesara, Mater. Des., 162, 249 (2019); https://doi.org/10.1016/j.matdes.2018.11.037
K. Charipar, H. Kim, A. Piqué and N. Charipar, Nanomaterials, 10, 1648 (2020); https://doi.org/10.3390/nano10091648
R. Shashanka, H. Esgin, V.M. Yilmaz and Y. Caglar, J. Sci.: Adv. Mater. Devices, 5, 185 (2020); https://doi.org/10.1016/j.jsamd.2020.04.005
A. Becheri, M. Dürr, P. Lo Nostro and P. Baglioni, J. Nanopart. Res., 10, 679 (2008); https://doi.org/10.1007/s11051-007-9318-3
M.S. Yadav, N. Singh and A. Kumar, J. Mater. Sci. Mater. Electron., 29, 6853 (2018); https://doi.org/10.1007/s10854-018-8672-5
G. Sundaraselvan and S.D. Quine, J. Nanosci. Technol., 3, 289 (2017).
L.F.A. Raj and E. Jayalakshmy, Orient. J. Chem., 31, 51 (2015); https://doi.org/10.13005/ojc/310105
S.K. Chaudhuri and L. Malodia, Appl. Nanosci., 7, 501 (2017); https://doi.org/10.1007/s13204-017-0586-7
P. Ramesh, A. Rajendran and M. Meenakshisundaram, J. Nanosci. Nanotechnol., 2, 41 (2014).
M.S. Geetha, H. Nagabhushana and H.N. Shivananjaiah, Mater. Today Proc., 5, 22328 (2018); https://doi.org/10.1016/j.matpr.2018.06.599
H. Umar, D. Kavaz and N. Rizaner, Int. J. Nanomedicine, 14, 87 (2018); https://doi.org/10.2147/IJN.S186888
G. Sangeetha, S. Rajeshwari and R. Venckatesh, Mater. Res. Bull., 46, 2560 (2011); https://doi.org/10.1016/j.materresbull.2011.07.046
G. Bhumi and N. Savithramma, Int. J. Drug Dev. Res., 6, 208 (2014).
R.K. Shah, F. Boruah and N. Parween, Int. J. Curr. Microbiol. Appl. Sci., 4, 444 (2015).
H. Abdul Salam, R. Sivaraj and R. Venckatesh, Mater. Lett., 131, 16 (2014); https://doi.org/10.1016/j.matlet.2014.05.033
L. Fu and Z. Fu, Ceram. Int., 41, 2492 (2015); https://doi.org/10.1016/j.ceramint.2014.10.069
M. Sundrarajan, S. Ambika and K. Bharathi, Adv. Powder Technol., 26, 1294 (2015); https://doi.org/10.1016/j.apt.2015.07.001
R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
C. Shiny, A. Saxena and S.P. Gupta, Int. J. Pharm. Biomed. Res., 4, 97 (2013).
K. Guruviah, S.K. Annamalai, A. Ramaswamy, C. Sivasankaran, S. Ramasamy, H. Barabadi and M. Saravanan, Nanomed. J., 7, 272 (2020); https://doi.org/10.22038/nmj.2020.07.00003
J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan and S.I. Hong, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 015008 (2018); https://doi.org/10.1088/2043-6254/aaa6f1
S. Azizi, M.B. Ahmad, F. Namvar and R. Mohamad, Mater. Lett., 116, 275 (2014); https://doi.org/10.1016/j.matlet.2013.11.038
J. Santhoshkumar, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technologies, 3, 459 (2017); https://doi.org/10.1016/j.reffit.2017.05.001
U.R. Shwetha, M.S. Latha, C.R. Rajith Kumar, M.S. Kiran and V.S. Betageri, J. Inorg. Organomet. Polym. Mater., 30, 4876 (2020); https://doi.org/10.1007/s10904-020-01575-w
H.M. Yusof, R. Mohamad, U.H. Zaidan and N.A.A. Rahman, J. Anim. Sci. Biotechnol., 10, 57 (2019); https://doi.org/10.1186/s40104-019-0368-z
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan and D. Mohamad, Nano-Micro Lett., 7, 219 (2015); https://doi.org/10.1007/s40820-015-0040-x
S.H.S. Dananjaya, R.S. Kumar, M. Yang, C. Nikapitiya, J. Lee and M. De Zoysa, Int. J. Biol. Macromol., 108, 1281 (2018); https://doi.org/10.1016/j.ijbiomac.2017.11.046
P. Rajiv, S. Rajeshwari and R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 384 (2013); https://doi.org/10.1016/j.saa.2013.04.072
D. Selvakumari, R. Deepa, V. Mahalakshmi, P. Subhashini and N. Lakshminarayan, ARPN J. Eng. Appl. Sci, 10, 5418 (2015).