Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chelating Resin Based on Silica Gel for Solid-Phase Extraction Coupled with Flame Atomic Absorption Spectrometric Determination of Nickel and Cadmium
Corresponding Author(s) : Sachin Mittal
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
Chelating resins offer a fast, accurate and simple method for separation and preconcentration of metal ions at low concentrations prior to their determination by an instrumental method. Silica gel-based chelating resin with chemically immobilized aurintricarboxylic acid was synthesized, characterized and used to determine Ni(II) and Cd(II) at trace levels, coupled with their analysis by flame atomic absorption spectrometer. The resin had sorption capacities of 0.21 mmol g-1 and 0.10 mmol g-1 for Ni(II) and Cd(II), respectively. The analytical detection limit (N = 20) was 1.70 μg L-1 for Ni(II) and 1.90 μg L-1 for Cd(II). The proposed method was useful for the quantitative determination of Ni(II) and Cd(II) in some commercial and water samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.S. Garg, R.K. Sharma, N. Bhojak and S. Mittal, Microchem. J., 61, 94 (1999); https://doi.org/10.1006/mchj.1998.1681
- N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, Npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
- E. Koosha, M. Shamsipur, F. Salimi and M. Ramezani, Sep. Sci. Technol., 56, 1721 (2021); https://doi.org/10.1080/01496395.2020.1788597
- M. Lundström, J. Liipo, P. Taskinen and J. Aromaa, Hydrometallurgy, 166, 136 (2016); https://doi.org/10.1016/j.hydromet.2016.10.017
- M. Soylak and M. Koksal, Microchem. J., 147, 832 (2019); https://doi.org/10.1016/j.microc.2019.04.006
- M.D. Granado-Castro, M.J. Casanueva-Marenco, M.D. Galindo-Riaño, H. El Mai and M. Díaz-de-Alba, Mar. Chem., 198, 56 (2018); https://doi.org/10.1016/j.marchem.2017.11.009
- J. Ali, M. Tuzen, D. Citak, O.D. Uluozlu, D. Mendil, T.G. Kazi and H.I. Afridi, J. Mol. Liq., 291, 111299 (2019); https://doi.org/10.1016/j.molliq.2019.111299
- Y. Yavuz and B. Ögütveren, J. Environ. Manage., 207, 151 (2018); https://doi.org/10.1016/j.jenvman.2017.11.034
- Z. Al-Qodah and M. Al-Shannag, Sep. Sci. Technol., 52, 2649 (2017); https://doi.org/10.1080/01496395.2017.1373677
- Q. Zou, Z. Zhang, H. Li, W. Pei, M. Ding, Z. Xie, Y. Huo and H. Li, Appl. Catal. B, 264, 118463 (2020); https://doi.org/10.1016/j.apcatb.2019.118463
- B.Y. Spivakov, K. Geckeler and E. Bayer, Nature, 315, 313 (1985); https://doi.org/10.1038/315313a0
- Y. Lu, X. Gao and C.-T.A. Chen, Mar. Chem., 215, 103685 (2019); https://doi.org/10.1016/j.marchem.2019.103685
- R.K. Sharma, S. Mittal and M. Koel, Crit. Rev. Anal. Chem., 33, 183 (2003); https://doi.org/10.1080/713609163
- A. Chauhan, A. Islam, H. Javed and S. Kumar, Microchem. J., 146, 606 (2019); https://doi.org/10.1016/j.microc.2019.01.051
- H.A. Elbadawy, A.H. Abdel-Salam and T.E. Khalil, Microchem. J., 165, 106097 (2021); https://doi.org/10.1016/j.microc.2021.106097
- X. Cao, Q. Wang, S. Wang and R. Man, Polymers, 12, 1905 (2020); https://doi.org/10.3390/polym12091905
- X. Qiu, H. Hu, J. Yang, C. Wang and Z. Cheng, Hydrometallurgy, 180, 121 (2018); https://doi.org/10.1016/j.hydromet.2018.07.015
- R.K. Sharma, S. Mittal, S. Azami and A. Adholeya, Surf. Eng., 21, 232 (2005); https://doi.org/10.1179/174329405X50082
- B.S. Garg, R.K. Sharma, J.S. Bist, N. Bhojak and S. Mittal, Talanta, 48, 49 (1999); https://doi.org/10.1016/S0039-9140(98)00223-9
- S. Mittal, V. Kumar and R.K. Sharma, J. Indian Chem. Soc., 99, 100481 (2022); https://doi.org/10.1016/j.jics.2022.100481
- M.C. Gennaro, C. Baiocchi, E. Campi, E. Mentasti and R. Aruga, Anal. Chim. Acta, 151, 339 (1983); https://doi.org/10.1016/S0003-2670(00)80095-1
- F.B. Biswas, I.M.M. Rahman, K. Nakakubo, K. Yunoshita, M. Endo, A.S. Mashio, T. Taniguchi, T. Nishimura, K. Maeda and H. Hasegawa, J. Hazard. Mater., 418, 126308 (2021); https://doi.org/10.1016/j.jhazmat.2021.126308
- Q. Wu, M. Liu and X. Wang, Sep. Purif. Technol., 211, 162 (2019); https://doi.org/10.1016/j.seppur.2018.09.070
- J. Lu, X. Wu, Y. Li, W. Cui and Y. Liang, Surf. Interfaces, 12, 108 (2018); https://doi.org/10.1016/j.surfin.2018.04.005
- N. Lerner, D. Meyerstein, D. Shamir, V. Marks, Z. Shamish, T. OhaionRaz and E. Maimon, Inorg. Chim. Acta, 486, 642 (2019); https://doi.org/10.1016/j.ica.2018.11.018
- R.G. González, B.J. Blackburn and T. Schleich, Biochim. Biophys. Acta Nucleic Acids Protein Synth., 562, 534 (1979); https://doi.org/10.1016/0005-2787(79)90116-3
- M. Cushman and S. Kanamathareddy, Tetrahedron, 46, 1491 (1990); https://doi.org/10.1016/S0040-4020(01)81957-8
- G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, Longman Scientific & Technical, Ed. 5 (1989).
- R.K. Sharma, Pure Appl. Chem., 73, 181 (2001); https://doi.org/10.1351/pac200173010181
- B.S. Garg, J.S. Bist, R.K. Sharma and N. Bhojak, Talanta, 43, 2093 (1996); https://doi.org/10.1016/S0039-9140(96)01994-7
- E. Kendüzler, Sep. Sci. Technol., 41, 1645 (2006); https://doi.org/10.1080/01496390600632495
- M. Soylak, M. Tuzen and I. Narin, Quim. Nova, 29, 203 (2006); https://doi.org/10.1590/S0100-40422006000200005
- P. Singh, S. Mittal and R.K. Sharma, Indian J. Chem. Technol., 14, 204 (2007).
References
B.S. Garg, R.K. Sharma, N. Bhojak and S. Mittal, Microchem. J., 61, 94 (1999); https://doi.org/10.1006/mchj.1998.1681
N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, Npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
E. Koosha, M. Shamsipur, F. Salimi and M. Ramezani, Sep. Sci. Technol., 56, 1721 (2021); https://doi.org/10.1080/01496395.2020.1788597
M. Lundström, J. Liipo, P. Taskinen and J. Aromaa, Hydrometallurgy, 166, 136 (2016); https://doi.org/10.1016/j.hydromet.2016.10.017
M. Soylak and M. Koksal, Microchem. J., 147, 832 (2019); https://doi.org/10.1016/j.microc.2019.04.006
M.D. Granado-Castro, M.J. Casanueva-Marenco, M.D. Galindo-Riaño, H. El Mai and M. Díaz-de-Alba, Mar. Chem., 198, 56 (2018); https://doi.org/10.1016/j.marchem.2017.11.009
J. Ali, M. Tuzen, D. Citak, O.D. Uluozlu, D. Mendil, T.G. Kazi and H.I. Afridi, J. Mol. Liq., 291, 111299 (2019); https://doi.org/10.1016/j.molliq.2019.111299
Y. Yavuz and B. Ögütveren, J. Environ. Manage., 207, 151 (2018); https://doi.org/10.1016/j.jenvman.2017.11.034
Z. Al-Qodah and M. Al-Shannag, Sep. Sci. Technol., 52, 2649 (2017); https://doi.org/10.1080/01496395.2017.1373677
Q. Zou, Z. Zhang, H. Li, W. Pei, M. Ding, Z. Xie, Y. Huo and H. Li, Appl. Catal. B, 264, 118463 (2020); https://doi.org/10.1016/j.apcatb.2019.118463
B.Y. Spivakov, K. Geckeler and E. Bayer, Nature, 315, 313 (1985); https://doi.org/10.1038/315313a0
Y. Lu, X. Gao and C.-T.A. Chen, Mar. Chem., 215, 103685 (2019); https://doi.org/10.1016/j.marchem.2019.103685
R.K. Sharma, S. Mittal and M. Koel, Crit. Rev. Anal. Chem., 33, 183 (2003); https://doi.org/10.1080/713609163
A. Chauhan, A. Islam, H. Javed and S. Kumar, Microchem. J., 146, 606 (2019); https://doi.org/10.1016/j.microc.2019.01.051
H.A. Elbadawy, A.H. Abdel-Salam and T.E. Khalil, Microchem. J., 165, 106097 (2021); https://doi.org/10.1016/j.microc.2021.106097
X. Cao, Q. Wang, S. Wang and R. Man, Polymers, 12, 1905 (2020); https://doi.org/10.3390/polym12091905
X. Qiu, H. Hu, J. Yang, C. Wang and Z. Cheng, Hydrometallurgy, 180, 121 (2018); https://doi.org/10.1016/j.hydromet.2018.07.015
R.K. Sharma, S. Mittal, S. Azami and A. Adholeya, Surf. Eng., 21, 232 (2005); https://doi.org/10.1179/174329405X50082
B.S. Garg, R.K. Sharma, J.S. Bist, N. Bhojak and S. Mittal, Talanta, 48, 49 (1999); https://doi.org/10.1016/S0039-9140(98)00223-9
S. Mittal, V. Kumar and R.K. Sharma, J. Indian Chem. Soc., 99, 100481 (2022); https://doi.org/10.1016/j.jics.2022.100481
M.C. Gennaro, C. Baiocchi, E. Campi, E. Mentasti and R. Aruga, Anal. Chim. Acta, 151, 339 (1983); https://doi.org/10.1016/S0003-2670(00)80095-1
F.B. Biswas, I.M.M. Rahman, K. Nakakubo, K. Yunoshita, M. Endo, A.S. Mashio, T. Taniguchi, T. Nishimura, K. Maeda and H. Hasegawa, J. Hazard. Mater., 418, 126308 (2021); https://doi.org/10.1016/j.jhazmat.2021.126308
Q. Wu, M. Liu and X. Wang, Sep. Purif. Technol., 211, 162 (2019); https://doi.org/10.1016/j.seppur.2018.09.070
J. Lu, X. Wu, Y. Li, W. Cui and Y. Liang, Surf. Interfaces, 12, 108 (2018); https://doi.org/10.1016/j.surfin.2018.04.005
N. Lerner, D. Meyerstein, D. Shamir, V. Marks, Z. Shamish, T. OhaionRaz and E. Maimon, Inorg. Chim. Acta, 486, 642 (2019); https://doi.org/10.1016/j.ica.2018.11.018
R.G. González, B.J. Blackburn and T. Schleich, Biochim. Biophys. Acta Nucleic Acids Protein Synth., 562, 534 (1979); https://doi.org/10.1016/0005-2787(79)90116-3
M. Cushman and S. Kanamathareddy, Tetrahedron, 46, 1491 (1990); https://doi.org/10.1016/S0040-4020(01)81957-8
G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, Longman Scientific & Technical, Ed. 5 (1989).
R.K. Sharma, Pure Appl. Chem., 73, 181 (2001); https://doi.org/10.1351/pac200173010181
B.S. Garg, J.S. Bist, R.K. Sharma and N. Bhojak, Talanta, 43, 2093 (1996); https://doi.org/10.1016/S0039-9140(96)01994-7
E. Kendüzler, Sep. Sci. Technol., 41, 1645 (2006); https://doi.org/10.1080/01496390600632495
M. Soylak, M. Tuzen and I. Narin, Quim. Nova, 29, 203 (2006); https://doi.org/10.1590/S0100-40422006000200005
P. Singh, S. Mittal and R.K. Sharma, Indian J. Chem. Technol., 14, 204 (2007).