Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Supramolecular Gels with Mouldable Properties from Fatty Acid to make Graphene-Based Nanohybrid Paper
Corresponding Author(s) : Abhijit Biswas
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
''Paper-like'' materials composed of graphene exhibit good mechanical, thermal and electronic properties and are expected to find a variety of applications. Herein, a simple and elegant strategy has been reported to obtain a graphene-based nanohybrid paper. Mysristic acid in sodium salt-containing aqueous solution forms a stable hydrogel. When myristic acid was mixed with glucose and graphene oxide produces graphene-based gel under the treatment of heating and subsequent cooling through electrostatic stabilization. By applying proper mechanical compression on gel a stable and flexible nanofibrillar graphene-based paper has been obtained without destroying the network structure. This study has enabled to develop of a facile approach to large-scale production of graphene-based paper. The properties of this graphene-based paper have been investigated using electron microscopy, FT-IR spectroscopy, X-ray diffraction and Raman spectroscopy. The obtained paper is thermally stable and resistant to a wide range of organic solvents and therefore interesting in making various advanced electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S.Y. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff and S.O. Kim, Adv. Mater., 22, 1247 (2010); https://doi.org/10.1002/adma.200903063
- K. Yu, P. Wang, G. Lu, K.H. Chen, Z. Bo and J. Chen, J. Phys. Chem. Lett., 2, 537 (2011); https://doi.org/10.1021/jz200087w
- S. Lee, K. Lee, C.H. Liu and Z. Zhong, Nanoscale, 4, 639 (2012); https://doi.org/10.1039/C1NR11574J
- X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); https://doi.org/10.1126/science.1150878
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- H. He, J. Klinowski, M. Forster and A. Lerf, Chem. Phys. Lett., 287, 53 (1998); https://doi.org/10.1016/S0009-2614(98)00144-4
- H. He, T. Riedl, A. Lerf and J. Klinowski, J. Phys. Chem., 100, 19954 (1996); https://doi.org/10.1021/jp961563t
- S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H
- S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon and R.C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006); https://doi.org/10.1021/ja060680r
- J. Nanda, A. Biswas, B. Adhikari and A. Banerjee, Angew. Chem. Int. Ed., 52, 5041 (2013); https://doi.org/10.1002/anie.201301128
- A. Biswas and A. Banerjee, Soft Matter, 11, 4226 (2015); https://doi.org/10.1039/C5SM00359H
- S. Roy, A. Baral and A. Banerjee, Chem. Eur. J., 19, 14950 (2013); https://doi.org/10.1002/chem.201301655
- Z. Sui, X. Zhang, Y. Lei and Y. Luo, Carbon, 49, 4314 (2011); https://doi.org/10.1016/j.carbon.2011.06.006
- Z. Sui, Q. Meng, X. Zhang, R. Ma and B. Cao, J. Mater. Chem., 22, 8767 (2012); https://doi.org/10.1039/c2jm00055e
- X. Huang, X. Qi, F. Boey and H. Zhang, Chem. Soc. Rev., 41, 666 (2012); https://doi.org/10.1039/C1CS15078B
- C. Huang, H. Bai, C. Li and G. Shi, Chem. Commun., 47, 4962 (2011); https://doi.org/10.1039/c1cc10412h
- A. Biswas and A. Banerjee, Chem. Asian J., 9, 3451 (2014); https://doi.org/10.1002/asia.201402695
- B. Adhikari, A. Biswas and A. Banerjee, ACS Appl. Mater. Interfaces, 4, 5472 (2012); https://doi.org/10.1021/am301373n
- L. Huang, C. Li, W. Yuan and G. Shi, Nanoscale, 5, 3780 (2013); https://doi.org/10.1039/c3nr00196b
- Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano, 4, 4324 (2010); https://doi.org/10.1021/nn101187z
- K.Y. Shin, J.Y. Hong and J. Jang, Chem. Commun., 47, 8527 (2011); https://doi.org/10.1039/c1cc12913a
- D.W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu and H.-M. Cheng, ACS Nano, 3, 1745 (2009); https://doi.org/10.1021/nn900297m
- N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.S. Johansson, J.D. Nam and J. Seppälä, J. Mater. Chem., 21, 13991 (2011); https://doi.org/10.1039/c1jm12134k
- X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu and X. Zhao, Chemistry, 17, 10898 (2011); https://doi.org/10.1002/chem.201100727
- H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757
- S. Park, N. Mohanty, J.W. Suk, A. Nagaraja, J. An, R.D. Piner, W. Cai, D.R. Dreyer, V. Berry and R.S. Ruoff, Adv. Mater., 22, 1736 (2010); https://doi.org/10.1002/adma.200903611
- F. Liu, S. Song, D. Xue and H. Zhang, Adv. Mater., 24, 1089 (2012); https://doi.org/10.1002/adma.201104691
- Y.L. Huang, H.W. Tien, C.C.M. Ma, S.Y. Yang, S.Y. Wu, H.Y. Liu and Y.W. Mai, J. Mater. Chem., 21, 18236 (2011); https://doi.org/10.1039/c1jm13790e
- C. Zhu, S. Guo, Y. Fang and S. Dong, ACS Nano, 4, 2429 (2010); https://doi.org/10.1021/nn1002387
- W. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- K. Rosenlehner, B. Schade, C. Böttcher, C.M. Jäger, T. Clark, F.W. Heinemann and A. Hirsch, Chemistry, 16, 9544 (2010); https://doi.org/10.1002/chem.201001150
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun., 46, 1112 (2010); https://doi.org/10.1039/B917705A
- X. Jiao, Y. Qiu, L. Zhang and X. Zhang, RSC Adv., 7, 52337 (2017); https://doi.org/10.1039/C7RA10809E
- T.R.B. Ramakrishna, D.P. Killeen, T.D. Nalder, S.N. Marshall, W. Yang and C.J. Barrow, Appl. Spectrosc., 72, 1764 (2018); https://doi.org/10.1177/0003702818798405
References
D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S.Y. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff and S.O. Kim, Adv. Mater., 22, 1247 (2010); https://doi.org/10.1002/adma.200903063
K. Yu, P. Wang, G. Lu, K.H. Chen, Z. Bo and J. Chen, J. Phys. Chem. Lett., 2, 537 (2011); https://doi.org/10.1021/jz200087w
S. Lee, K. Lee, C.H. Liu and Z. Zhong, Nanoscale, 4, 639 (2012); https://doi.org/10.1039/C1NR11574J
X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); https://doi.org/10.1126/science.1150878
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
H. He, J. Klinowski, M. Forster and A. Lerf, Chem. Phys. Lett., 287, 53 (1998); https://doi.org/10.1016/S0009-2614(98)00144-4
H. He, T. Riedl, A. Lerf and J. Klinowski, J. Phys. Chem., 100, 19954 (1996); https://doi.org/10.1021/jp961563t
S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H
S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon and R.C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006); https://doi.org/10.1021/ja060680r
J. Nanda, A. Biswas, B. Adhikari and A. Banerjee, Angew. Chem. Int. Ed., 52, 5041 (2013); https://doi.org/10.1002/anie.201301128
A. Biswas and A. Banerjee, Soft Matter, 11, 4226 (2015); https://doi.org/10.1039/C5SM00359H
S. Roy, A. Baral and A. Banerjee, Chem. Eur. J., 19, 14950 (2013); https://doi.org/10.1002/chem.201301655
Z. Sui, X. Zhang, Y. Lei and Y. Luo, Carbon, 49, 4314 (2011); https://doi.org/10.1016/j.carbon.2011.06.006
Z. Sui, Q. Meng, X. Zhang, R. Ma and B. Cao, J. Mater. Chem., 22, 8767 (2012); https://doi.org/10.1039/c2jm00055e
X. Huang, X. Qi, F. Boey and H. Zhang, Chem. Soc. Rev., 41, 666 (2012); https://doi.org/10.1039/C1CS15078B
C. Huang, H. Bai, C. Li and G. Shi, Chem. Commun., 47, 4962 (2011); https://doi.org/10.1039/c1cc10412h
A. Biswas and A. Banerjee, Chem. Asian J., 9, 3451 (2014); https://doi.org/10.1002/asia.201402695
B. Adhikari, A. Biswas and A. Banerjee, ACS Appl. Mater. Interfaces, 4, 5472 (2012); https://doi.org/10.1021/am301373n
L. Huang, C. Li, W. Yuan and G. Shi, Nanoscale, 5, 3780 (2013); https://doi.org/10.1039/c3nr00196b
Y. Xu, K. Sheng, C. Li and G. Shi, ACS Nano, 4, 4324 (2010); https://doi.org/10.1021/nn101187z
K.Y. Shin, J.Y. Hong and J. Jang, Chem. Commun., 47, 8527 (2011); https://doi.org/10.1039/c1cc12913a
D.W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu and H.-M. Cheng, ACS Nano, 3, 1745 (2009); https://doi.org/10.1021/nn900297m
N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.S. Johansson, J.D. Nam and J. Seppälä, J. Mater. Chem., 21, 13991 (2011); https://doi.org/10.1039/c1jm12134k
X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu and X. Zhao, Chemistry, 17, 10898 (2011); https://doi.org/10.1002/chem.201100727
H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757
S. Park, N. Mohanty, J.W. Suk, A. Nagaraja, J. An, R.D. Piner, W. Cai, D.R. Dreyer, V. Berry and R.S. Ruoff, Adv. Mater., 22, 1736 (2010); https://doi.org/10.1002/adma.200903611
F. Liu, S. Song, D. Xue and H. Zhang, Adv. Mater., 24, 1089 (2012); https://doi.org/10.1002/adma.201104691
Y.L. Huang, H.W. Tien, C.C.M. Ma, S.Y. Yang, S.Y. Wu, H.Y. Liu and Y.W. Mai, J. Mater. Chem., 21, 18236 (2011); https://doi.org/10.1039/c1jm13790e
C. Zhu, S. Guo, Y. Fang and S. Dong, ACS Nano, 4, 2429 (2010); https://doi.org/10.1021/nn1002387
W. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
K. Rosenlehner, B. Schade, C. Böttcher, C.M. Jäger, T. Clark, F.W. Heinemann and A. Hirsch, Chemistry, 16, 9544 (2010); https://doi.org/10.1002/chem.201001150
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun., 46, 1112 (2010); https://doi.org/10.1039/B917705A
X. Jiao, Y. Qiu, L. Zhang and X. Zhang, RSC Adv., 7, 52337 (2017); https://doi.org/10.1039/C7RA10809E
T.R.B. Ramakrishna, D.P. Killeen, T.D. Nalder, S.N. Marshall, W. Yang and C.J. Barrow, Appl. Spectrosc., 72, 1764 (2018); https://doi.org/10.1177/0003702818798405