Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
in vitro Antibiofilm Evaluation of N-tert-Butylacrylamide based Hydrogels
Corresponding Author(s) : P. Pazhanisamy
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
By free-radical copolymerization, a series of N-tert-butylacrylamide based hydrogels viz. poly(N-tert-butylacryalmide-co-acrylamide/maleic acid) (HG11), poly(N-tert-butylacryalmide-co-acrylamide/N-isopropylacrylamide) (HG23) and poly(N-tert-butylacrylamide-co-acrylamide/acrylic acid) (HG35) were synthesized. Infrared spectral investigations, SEM, XRD, and TGA were used to characterize the prepared hydrogels. Biofilm quantification for Staphylococcus aureus and Pseudomonas aeruginosa was assessed in vitro using the microtiter plate (MTP) approach. The hydrogels were found to have the least amount of biofilm formation on their surfaces, indicating that they have superior antibiofilm action and thus low fouling. Fluorescence microscopy was used to examine the morphology to supplement the biofilm inhibition. Among the three hydrogels, HG11 and HG35 were found to be more effective against S. aureus than P. aeruginosa. But HG23 caused more fouling resistant for P. aeruginosa than S. aureus.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Roy, M. Tiwari, G. Donelli and V. Tiwari, Virulence, 9, 522 (2018); https://doi.org/10.1080/21505594.2017.1313372
- N. Høiby, O. Ciofu and T. Bjarnsholt, Future Microbiol., 5, 1663 (2010); https://doi.org/10.2217/fmb.10.125
- N.K. Archer, M.J. Mazaitis, J.W. Costerton, G. Leid, M.E. Powers and M.E. Shirtliff, Virulence, 2, 445 (2011); https://doi.org/10.4161/viru.2.5.17724
- S. Noimark, C.W. Dunnill, M. Wilson and I.P. Parkin, Chem. Soc. Rev., 38, 3435 (2009); https://doi.org/10.1039/b908260c
- E.M. Hetrick and M.H. Schoenfisch, Chem. Soc. Rev., 35, 780 (2006); https://doi.org/10.1039/b515219b
- L.D. Shea, T.K. Woodruff and A. Shikanov, Annu. Rev. Biomed. Eng., 16, 29 (2014); https://doi.org/10.1146/annurev-bioeng-071813-105131
- C. Ghobril and M.W. Grinstaff, Chem. Soc. Rev., 44, 1820 (2015); https://doi.org/10.1039/C4CS00332B
- N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, N. Aktas and M. Turk, Int. J. Biol. Macromol., 82, 150 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.057
- C.T. Tsao, C.H. Chang, Y.Y. Lin, M.F. Wu, J.-L. Wang, J.L. Han and K.H. Hsieh, Carbohydr. Res., 345, 1774 (2010); https://doi.org/10.1016/j.carres.2010.06.002
- K. Vasilev, Coatings, 9, 654 (2019); https://doi.org/10.3390/coatings9100654
- R. Lalani and L. Liu, Biomacromolecules, 13, 1853 (2012); https://doi.org/10.1021/bm300345e
- H. Yu, Z. Xu, H. Lei, M. Hu and Q. Yang, Sep. Purif. Technol., 53, 119 (2007); https://doi.org/10.1016/j.seppur.2006.07.002
- C. Zhao, X. Li, L. Li, G. Cheng, X. Gong and J. Zheng, Langmuir, 29, 1517 (2013); https://doi.org/10.1021/la304511s
- C. Zhao, J. Fu, Z. Zhang and E. Xie, RSC Adv., 3, 4018 (2013); https://doi.org/10.1039/C3RA23182H
- M.J. Caulfield, G.G. Qiao and D.H. Solomon, Chem. Rev., 102, 3067 (2002); https://doi.org/10.1021/cr010439p
- N. Nishiyama, K. Suzuki, H. Yoshida, H. Teshima and K. Nemoto, Biomaterials, 25, 965 (2004); https://doi.org/10.1016/S0142-9612(03)00616-1
- M. Rizwan, S.R. Gilani, A. Iqbal and D.S. Naseem, J. Adv. Res., 33, 15 (2021); https://doi.org/10.1016/j.jare.2021.03.007
- G.D. Christensen, W.A. Simpson, J.J. Younger, L.M. Baddour, F.F. Barrett, D.M. Melton and E.H. Beachey, J. Clin. Microbiol., 22, 996 (1985); https://doi.org/10.1128/jcm.22.6.996-1006.1985
- T.R. Scheuerman, A.K. Camper and M.A. Hamilton, J. Colloid Interface Sci., 208, 23 (1998); https://doi.org/10.1006/jcis.1998.5717
- M. Kiremitci-Gumustederelioglu and A. Pesmen, Biomaterials, 17, 443 (1996); https://doi.org/10.1016/0142-9612(96)89662-1
- X. Zhang, L. Wang and E. Levänen, RSC Adv., 3, 12003 (2013); https://doi.org/10.1039/c3ra40497h
- B. Zdyrko, V. Klep, X. Li, Q. Kang, S. Minko, X. Wen and I. Luzinov, Mater. Sci. Eng. C, 29, 680 (2009); https://doi.org/10.1016/j.msec.2008.12.017
References
R. Roy, M. Tiwari, G. Donelli and V. Tiwari, Virulence, 9, 522 (2018); https://doi.org/10.1080/21505594.2017.1313372
N. Høiby, O. Ciofu and T. Bjarnsholt, Future Microbiol., 5, 1663 (2010); https://doi.org/10.2217/fmb.10.125
N.K. Archer, M.J. Mazaitis, J.W. Costerton, G. Leid, M.E. Powers and M.E. Shirtliff, Virulence, 2, 445 (2011); https://doi.org/10.4161/viru.2.5.17724
S. Noimark, C.W. Dunnill, M. Wilson and I.P. Parkin, Chem. Soc. Rev., 38, 3435 (2009); https://doi.org/10.1039/b908260c
E.M. Hetrick and M.H. Schoenfisch, Chem. Soc. Rev., 35, 780 (2006); https://doi.org/10.1039/b515219b
L.D. Shea, T.K. Woodruff and A. Shikanov, Annu. Rev. Biomed. Eng., 16, 29 (2014); https://doi.org/10.1146/annurev-bioeng-071813-105131
C. Ghobril and M.W. Grinstaff, Chem. Soc. Rev., 44, 1820 (2015); https://doi.org/10.1039/C4CS00332B
N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, N. Aktas and M. Turk, Int. J. Biol. Macromol., 82, 150 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.057
C.T. Tsao, C.H. Chang, Y.Y. Lin, M.F. Wu, J.-L. Wang, J.L. Han and K.H. Hsieh, Carbohydr. Res., 345, 1774 (2010); https://doi.org/10.1016/j.carres.2010.06.002
K. Vasilev, Coatings, 9, 654 (2019); https://doi.org/10.3390/coatings9100654
R. Lalani and L. Liu, Biomacromolecules, 13, 1853 (2012); https://doi.org/10.1021/bm300345e
H. Yu, Z. Xu, H. Lei, M. Hu and Q. Yang, Sep. Purif. Technol., 53, 119 (2007); https://doi.org/10.1016/j.seppur.2006.07.002
C. Zhao, X. Li, L. Li, G. Cheng, X. Gong and J. Zheng, Langmuir, 29, 1517 (2013); https://doi.org/10.1021/la304511s
C. Zhao, J. Fu, Z. Zhang and E. Xie, RSC Adv., 3, 4018 (2013); https://doi.org/10.1039/C3RA23182H
M.J. Caulfield, G.G. Qiao and D.H. Solomon, Chem. Rev., 102, 3067 (2002); https://doi.org/10.1021/cr010439p
N. Nishiyama, K. Suzuki, H. Yoshida, H. Teshima and K. Nemoto, Biomaterials, 25, 965 (2004); https://doi.org/10.1016/S0142-9612(03)00616-1
M. Rizwan, S.R. Gilani, A. Iqbal and D.S. Naseem, J. Adv. Res., 33, 15 (2021); https://doi.org/10.1016/j.jare.2021.03.007
G.D. Christensen, W.A. Simpson, J.J. Younger, L.M. Baddour, F.F. Barrett, D.M. Melton and E.H. Beachey, J. Clin. Microbiol., 22, 996 (1985); https://doi.org/10.1128/jcm.22.6.996-1006.1985
T.R. Scheuerman, A.K. Camper and M.A. Hamilton, J. Colloid Interface Sci., 208, 23 (1998); https://doi.org/10.1006/jcis.1998.5717
M. Kiremitci-Gumustederelioglu and A. Pesmen, Biomaterials, 17, 443 (1996); https://doi.org/10.1016/0142-9612(96)89662-1
X. Zhang, L. Wang and E. Levänen, RSC Adv., 3, 12003 (2013); https://doi.org/10.1039/c3ra40497h
B. Zdyrko, V. Klep, X. Li, Q. Kang, S. Minko, X. Wen and I. Luzinov, Mater. Sci. Eng. C, 29, 680 (2009); https://doi.org/10.1016/j.msec.2008.12.017