Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Coumarinyl(thienyl)thiazole Molecules as Fluorescent Photoswitches
Corresponding Author(s) : D. Annapurna Padmavathi
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
Light sensitive coumarinyl(thienyl)thiazole derivatives exhibiting photochromism and fluorescence were synthesized, characterized and their behavior was investigated theoretically using density functional theory (DFT). In presence of UV light, the molecules switch to the bridged cyclic isomeric form and on irradiation with visible light, they revert back to their original molecular form. These molecules are sensitive to both UV and visible light, and switch themselves between open ring isomers and closed ring isomers. The photo-regulated-switching energy (ΔE) from open to closed isomeric form is approximately 6.3 kcal/mol. All the synthesized derivatives exhibit fluorescence only in their open form. Theoretical data is compared with the experimental data and both show similar results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.J. Santamaria-Garcia, D.R. Flores-Hernandez, F.F. Contreras-Torres, R. Cué-Sampedro and J.A. Sánchez-Fernández, Int. J. Mol. Sci., 23, 7998 (2022); https://doi.org/10.3390/ijms23147998
- S. Mantha, S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham and S.D. Tran, Materials, 12, 3323 (2019); https://doi.org/10.3390/ma12203323
- J. Andreasson and U. Pischel, Chem. Soc. Rev., 44, 1053 (2015); https://doi.org/10.1039/C4CS00342J
- D. Bourgeois and V. Adam, IUBMB Life, 64, 482 (2012); https://doi.org/10.1002/iub.1023
- M.M. Russew and S. Hecht, Adv. Mater., 22, 3348 (2010); https://doi.org/10.1002/adma.200904102
- M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Chem. Rev., 114, 12174 (2014); https://doi.org/10.1021/cr500249p
- C. Li, K. Xiong, Y. Chen, C. Fan, Y.-L. Wang, H. Ye and M.-Q. Zhu, ACS Appl. Mater. Interfaces, 12, (2020); https://doi.org/10.1021/acsami.0c03122
- J. Frisch, M. Herder, P. Herrmann, G. Heimel, S. Hecht and N. Koch, Jpn. J. Appl. Phys. A., 113, 1 (2013); https://doi.org/10.1007/s00339-013-7892-z
- S. Tanaka, M. Toba, T. Nakashima, T. Kawai and K. Yoshino, Jpn. J. Appl. Phys., 47, 1215 (2008); https://doi.org/10.1143/JJAP.47.1215
- T. Kawai, T. Sasaki and M. Irie, Chem. Commun., 711 (2001); https://doi.org/10.1039/b100330p
- T. Fukaminato, T. Sasaki, T. Kawai, N. Tamai and M. Irie, J. Am. Chem. Soc., 126, 14843 (2004); https://doi.org/10.1021/ja047169n
- T.A. Golovkova, D.V. Kozlov and D.C. Neckers, J. Org. Chem., 70, 5545 (2005); https://doi.org/10.1021/jo050540k
- S. Xiao, T. Yi, F. Li and C. Huang, Tetrahedron Lett., 46, 9009 (2005); https://doi.org/10.1016/j.tetlet.2005.10.102
- X. Sheng, A. Peng, H. Fu, J. Yao, Y. Liu and Y. Wang, J. Mater. Res., 22, 1558 (2007); https://doi.org/10.1557/JMR.2007.0199
- C.C. Corredor, Z.L. Huang and K.D. Belfield, Adv. Mater., 18, 2910 (2006); https://doi.org/10.1002/adma.200600826
- M. Herder, B. Schmidt, M.L. Grubert, M. Pätzel, J. Schwarz and S. Hecht, J. Am. Chem. Soc., 137, 2738 (2015); https://doi.org/10.1021/ja513027s
- M.M. Krayushkin, S.N. Ivanov, A.Y. Martynkin, B.V. Lichitsky, A.A. Dudinov and B.M. Uzhinov, Russ. Chem. Bull., 50, 116 (2001); https://doi.org/10.1023/A:1009541605405
- M.M. Krayushkin, B.V. Lichitskii, A.P. Mikhalev, B.V. Nabatov, A.A. Dudinov and S.N. Ivanov, Russ. J. Org. Chem., 42, 860 (2006); https://doi.org/10.1134/S107042800606008X
- V.F. Traven, A.Y. Bochkov, M.M. Krayushkin, V.N. Yarovenko, B.V. Nabatov, S.M. Dolotov, V.A. Barachevsky and I.P. Beletskaya, Org. Lett., 10, 1319 (2008); https://doi.org/10.1021/ol800223g
- K. Mahesh and D.A. Padmavathi, J. Fluoresc., 30, 35 (2020); https://doi.org/10.1007/s10895-019-02444-7
- V.Z. Shirinian, D.V. Lonshakov, A.G. Lvov and M.M. Krayushkin, Russ. Chem. Rev., 82, 511 (2013); https://doi.org/10.1070/RC2013v082n06ABEH004339
- A.V. Metelitsa, V.P. Rybalkin, N.I. Makarova, P.V. Levchenko, V.S. Kozyrev, E.N. Shepelenko, L.L. Popova, V.A. Bren’ and V.I. Minkina, Russ. Chem. Bull. Int. Ed., 59, 1639 (2010); https://doi.org/10.1007/s11172-010-0288-8
- A.V. Metelitsa, V.P. Rybalkin, N.I. Makarova, P.V. Levchenko, V.S. Kozyrev, E.N. Shepelenko, L.L. Popova, V.A. Bren’ and V.I. Minkina, Chem. Heterocycl. Compd., 50, 932 (2014); https://doi.org/10.1007/s10593-014-1547-7
- S. Kawai, T. Nakashima, K. Atsumi, T. Sakai, M. Harigai, Y. Imamoto, H. Kamikubo, M. Kataoka and T. Kawai, Chem. Mater., 19, 3479 (2007); https://doi.org/10.1021/cm0630340
- N.I. Makarova, A.V. Chernyshev, V.P. Rybalkin, S.Y. Zmeeva, L.L. Popova, K.S. Tikhomirova, A.V. Metelitsa, A.D. Dubonosov, V.A. Bren and V.I. Minkin, ARKIVOC, 1 (2016); https://doi.org/10.24820/ark.5550190.p009.806
- S. Wang, L. Ma, G. Liu and S. Pu, Dyes Pigments, 164, 257 (2019); https://doi.org/10.1016/j.dyepig.2019.01.029
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., V.T. Kudin, K.N. Burant, J.C. Millam, J.M. Iyengar, S.S. Tomasi, J. Barone, V. Mennucci, B. Cossi, M. Scalmani, G. Rega, N. Petersson, G.A. Nakatsuji, H. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Klene, M. Li, X. Knox, J.E. Hratchian, H.P. Cross, J.B. Bakken,V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R. Pomelli, C. Ochterski, J.W. Ayala, P.Y. Morokuma, K. Voth, G.A. Salvador, P. Dannenberg, J.J. Zakrzewski, V.G. Dapprich, S. Daniels, A.D. Strain, M.C. Farkas, O. Malick, D.K. Rabuck, A.D. Raghavachari, K. Foresman, J.B. Ortiz, J.V. Cui, Q. Baboul, A.G. Clifford, S. Cioslowski, J. Stefanov, B.B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Martin, R.L. Fox, D.J. Keith, T. Al-Laham, M.A. Peng, C.Y. Nanayakkara, A. Challacombe, M. Gill, P.M.W. Johnson, B. Chen, W. Wong, M.W. Gonzalez and C.A. Pople, GAUSSIANRevision E.01; Gaussian: Wallingford CT (2004).
- J. Tirado-Rives and W.L. Jorgensen, J. Chem. Theory Comput., 4, 297 (2008); https://doi.org/10.1021/ct700248k
- N. Crivillers, E. Orgiu, F. Reinders, M. Mayor and P. Samorì, Adv. Mater., 23, 1447 (2011); https://doi.org/10.1002/adma.201003736
- Q. Wang, J. Frisch, M. Herder, S. Hecht and N. Koch, ChemPhysChem, 18, 722 (2017); https://doi.org/10.1002/cphc.201601442
- E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Pätzel, J. Frisch, E. Pavlica, D.T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht and P. Samorì, Nat. Chem., 4, 675 (2012); https://doi.org/10.1038/nchem.1384
References
V.J. Santamaria-Garcia, D.R. Flores-Hernandez, F.F. Contreras-Torres, R. Cué-Sampedro and J.A. Sánchez-Fernández, Int. J. Mol. Sci., 23, 7998 (2022); https://doi.org/10.3390/ijms23147998
S. Mantha, S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham and S.D. Tran, Materials, 12, 3323 (2019); https://doi.org/10.3390/ma12203323
J. Andreasson and U. Pischel, Chem. Soc. Rev., 44, 1053 (2015); https://doi.org/10.1039/C4CS00342J
D. Bourgeois and V. Adam, IUBMB Life, 64, 482 (2012); https://doi.org/10.1002/iub.1023
M.M. Russew and S. Hecht, Adv. Mater., 22, 3348 (2010); https://doi.org/10.1002/adma.200904102
M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Chem. Rev., 114, 12174 (2014); https://doi.org/10.1021/cr500249p
C. Li, K. Xiong, Y. Chen, C. Fan, Y.-L. Wang, H. Ye and M.-Q. Zhu, ACS Appl. Mater. Interfaces, 12, (2020); https://doi.org/10.1021/acsami.0c03122
J. Frisch, M. Herder, P. Herrmann, G. Heimel, S. Hecht and N. Koch, Jpn. J. Appl. Phys. A., 113, 1 (2013); https://doi.org/10.1007/s00339-013-7892-z
S. Tanaka, M. Toba, T. Nakashima, T. Kawai and K. Yoshino, Jpn. J. Appl. Phys., 47, 1215 (2008); https://doi.org/10.1143/JJAP.47.1215
T. Kawai, T. Sasaki and M. Irie, Chem. Commun., 711 (2001); https://doi.org/10.1039/b100330p
T. Fukaminato, T. Sasaki, T. Kawai, N. Tamai and M. Irie, J. Am. Chem. Soc., 126, 14843 (2004); https://doi.org/10.1021/ja047169n
T.A. Golovkova, D.V. Kozlov and D.C. Neckers, J. Org. Chem., 70, 5545 (2005); https://doi.org/10.1021/jo050540k
S. Xiao, T. Yi, F. Li and C. Huang, Tetrahedron Lett., 46, 9009 (2005); https://doi.org/10.1016/j.tetlet.2005.10.102
X. Sheng, A. Peng, H. Fu, J. Yao, Y. Liu and Y. Wang, J. Mater. Res., 22, 1558 (2007); https://doi.org/10.1557/JMR.2007.0199
C.C. Corredor, Z.L. Huang and K.D. Belfield, Adv. Mater., 18, 2910 (2006); https://doi.org/10.1002/adma.200600826
M. Herder, B. Schmidt, M.L. Grubert, M. Pätzel, J. Schwarz and S. Hecht, J. Am. Chem. Soc., 137, 2738 (2015); https://doi.org/10.1021/ja513027s
M.M. Krayushkin, S.N. Ivanov, A.Y. Martynkin, B.V. Lichitsky, A.A. Dudinov and B.M. Uzhinov, Russ. Chem. Bull., 50, 116 (2001); https://doi.org/10.1023/A:1009541605405
M.M. Krayushkin, B.V. Lichitskii, A.P. Mikhalev, B.V. Nabatov, A.A. Dudinov and S.N. Ivanov, Russ. J. Org. Chem., 42, 860 (2006); https://doi.org/10.1134/S107042800606008X
V.F. Traven, A.Y. Bochkov, M.M. Krayushkin, V.N. Yarovenko, B.V. Nabatov, S.M. Dolotov, V.A. Barachevsky and I.P. Beletskaya, Org. Lett., 10, 1319 (2008); https://doi.org/10.1021/ol800223g
K. Mahesh and D.A. Padmavathi, J. Fluoresc., 30, 35 (2020); https://doi.org/10.1007/s10895-019-02444-7
V.Z. Shirinian, D.V. Lonshakov, A.G. Lvov and M.M. Krayushkin, Russ. Chem. Rev., 82, 511 (2013); https://doi.org/10.1070/RC2013v082n06ABEH004339
A.V. Metelitsa, V.P. Rybalkin, N.I. Makarova, P.V. Levchenko, V.S. Kozyrev, E.N. Shepelenko, L.L. Popova, V.A. Bren’ and V.I. Minkina, Russ. Chem. Bull. Int. Ed., 59, 1639 (2010); https://doi.org/10.1007/s11172-010-0288-8
A.V. Metelitsa, V.P. Rybalkin, N.I. Makarova, P.V. Levchenko, V.S. Kozyrev, E.N. Shepelenko, L.L. Popova, V.A. Bren’ and V.I. Minkina, Chem. Heterocycl. Compd., 50, 932 (2014); https://doi.org/10.1007/s10593-014-1547-7
S. Kawai, T. Nakashima, K. Atsumi, T. Sakai, M. Harigai, Y. Imamoto, H. Kamikubo, M. Kataoka and T. Kawai, Chem. Mater., 19, 3479 (2007); https://doi.org/10.1021/cm0630340
N.I. Makarova, A.V. Chernyshev, V.P. Rybalkin, S.Y. Zmeeva, L.L. Popova, K.S. Tikhomirova, A.V. Metelitsa, A.D. Dubonosov, V.A. Bren and V.I. Minkin, ARKIVOC, 1 (2016); https://doi.org/10.24820/ark.5550190.p009.806
S. Wang, L. Ma, G. Liu and S. Pu, Dyes Pigments, 164, 257 (2019); https://doi.org/10.1016/j.dyepig.2019.01.029
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., V.T. Kudin, K.N. Burant, J.C. Millam, J.M. Iyengar, S.S. Tomasi, J. Barone, V. Mennucci, B. Cossi, M. Scalmani, G. Rega, N. Petersson, G.A. Nakatsuji, H. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Klene, M. Li, X. Knox, J.E. Hratchian, H.P. Cross, J.B. Bakken,V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R. Pomelli, C. Ochterski, J.W. Ayala, P.Y. Morokuma, K. Voth, G.A. Salvador, P. Dannenberg, J.J. Zakrzewski, V.G. Dapprich, S. Daniels, A.D. Strain, M.C. Farkas, O. Malick, D.K. Rabuck, A.D. Raghavachari, K. Foresman, J.B. Ortiz, J.V. Cui, Q. Baboul, A.G. Clifford, S. Cioslowski, J. Stefanov, B.B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Martin, R.L. Fox, D.J. Keith, T. Al-Laham, M.A. Peng, C.Y. Nanayakkara, A. Challacombe, M. Gill, P.M.W. Johnson, B. Chen, W. Wong, M.W. Gonzalez and C.A. Pople, GAUSSIANRevision E.01; Gaussian: Wallingford CT (2004).
J. Tirado-Rives and W.L. Jorgensen, J. Chem. Theory Comput., 4, 297 (2008); https://doi.org/10.1021/ct700248k
N. Crivillers, E. Orgiu, F. Reinders, M. Mayor and P. Samorì, Adv. Mater., 23, 1447 (2011); https://doi.org/10.1002/adma.201003736
Q. Wang, J. Frisch, M. Herder, S. Hecht and N. Koch, ChemPhysChem, 18, 722 (2017); https://doi.org/10.1002/cphc.201601442
E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Pätzel, J. Frisch, E. Pavlica, D.T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht and P. Samorì, Nat. Chem., 4, 675 (2012); https://doi.org/10.1038/nchem.1384