Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Suitability of Alumino-Silicate Precursor for Geopolymerization through Advance Analytical Techniques
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
The utilization of fly ash has become a tough task due to high landfill costs and interest in sustainable development. Geopolymer is an amorphous alumino silicate polymer can be used as binder in construction industries thereby the waste fly ash utilization in construction activities is possible. This study aims to evaluate the suitability of secondary source material fly ash for the geopolymerization reaction through analytical characterization to get geopolymer binder with reproducible quality. The analytical techniques such as XRF, XRD, SEM, 29Si and 27Al MAS-NMR spectroscopy and ATR FT-IR was used to characterize the precursors to get into the more in-depth understanding of chemical, mineral composition, microstructure, Si and Al environment and alumino silicate bonding. An experimental result reveals that the fly ash was found to be active enough for the geopolymerization reaction. The mechanical strength of geopolymer was found to be in acceptable range and higher in case of 10 M concentration. The 29Si and 27Al solid-state MAS-NMR spectroscopy of geopolymer represent the incorporation of aluminium into the silicate network structure of fly ash and the formation of network alumino silicate polymeric gel. The higher alkali concentration leads to the more sodium–alumino–silicate–hydrate (N-A-S-H) gel formation thereby increasing the strength properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.L. Provis, A. Palomo and C. Shi, Cement Concr. Res., 78, 110 (2015); https://doi.org/10.1016/j.cemconres.2015.04.013.
- J.L. Provis and J.S.J. van Deventer, In Proceeding of Alkali-Activated Materials: State-of-the-Art Report, RILEMTC 224-AAM, Springer/RILEM, Dordrecht(2014).
- C. Shi and J. Qian, Resour. Conserv. Recycling, 29, 195 (2000); https://doi.org/10.1016/S0921-3449(99)00060-9.
- C. Shi, A.F. Jiménez and A. Palomo, Cement Concr. Res., 41, 750 (2011); https://doi.org/10.1016/j.cemconres.2011.03.016.
- S.D. Wang, X.C. Pu, K.L. Scrivener and P.L. Pratt, Adv. Cement Res., 7, 93 (1995); https://doi.org/10.1680/adcr.1995.7.27.93.
- J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, France, p. 28 (2008).
- P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer, J. Mater. Sci., 42, 2917 (2007); https://doi.org/10.1007/s10853-006-0637-z.
- D.L.Y. Kong, J.G. Sanjayan and K. Sagoe-Crentsil, Cement Concr. Res., 37, 1583 (2007); https://doi.org/10.1016/j.cemconres.2007.08.021.
- S. Donatello, C. Kuenzel, A. Palomo and A. Fernández-Jiménez, Cement Concr. Compos., 45, 234 (2014); https://doi.org/10.1016/j.cemconcomp.2013.09.010.
- T. Bakharev, Cement Concr. Res., 36, 1134 (2006); https://doi.org/10.1016/j.cemconres.2006.03.022.
- A.M. Rashad and S.R. Zeedan, Constr. Build. Mater., 25, 3098 (2011); https://doi.org/10.1016/j.conbuildmat.2010.12.044.
- S.A. Bernal, R.M. de Gutiérrez and J.L. Provis, Constr. Build. Mater., 33, 99 (2012); https://doi.org/10.1016/j.conbuildmat.2012.01.017.
- C. Li, H. Sun and L. Li, Cement Concr. Res., 40, 1341 (2010); https://doi.org/10.1016/j.cemconres.2010.03.020.
- S.M. Park, J.G. Jang, N.K. Lee and H.K. Lee, Cement Concr. Res., 89, 72 (2016); https://doi.org/10.1016/j.cemconres.2016.08.004.
- V.F.F. Barbosa, K.J.D. MacKenzie and C. Thaumaturgo, Int. J. Inorg. Mater., 2, 309 (2000); https://doi.org/10.1016/S1466-6049(00)00041-6.
- J.L. Provis, P. Duxson, G.C. Lukey and J.S.J. van Deventer, Chem. Mater., 17, 2976 (2005); https://doi.org/10.1021/cm050219i.
- A. Ferna’ndez-Jimenez, A. Palomo, I. Sobrados and J. Sanz, Micropor. Mesopor. Mater., 91, 111 (2006); https://doi.org/10.1016/j.micromeso.2005.11.015.
- Z. Zhang, H. Wang and J.L. Provis, J. Sustain. Cement-Based Mater., 1, 154 (2012); https://doi.org/10.1080/21650373.2012.752620.
- K. Zheng, L. Chen and M. Gbozee, Constr. Build. Mater., 125, 1114 (2016); https://doi.org/10.1016/j.conbuildmat.2016.09.007.
- A. Fernández-Jiménez and A. Palomo, Fuel, 82, 2259 (2003); https://doi.org/10.1016/S0016-2361(03)00194-7.
- I. Catanescu, M. Georgescu and A. Melinescu, UPB Sci. Bull., 74, 1 (2012).
References
J.L. Provis, A. Palomo and C. Shi, Cement Concr. Res., 78, 110 (2015); https://doi.org/10.1016/j.cemconres.2015.04.013.
J.L. Provis and J.S.J. van Deventer, In Proceeding of Alkali-Activated Materials: State-of-the-Art Report, RILEMTC 224-AAM, Springer/RILEM, Dordrecht(2014).
C. Shi and J. Qian, Resour. Conserv. Recycling, 29, 195 (2000); https://doi.org/10.1016/S0921-3449(99)00060-9.
C. Shi, A.F. Jiménez and A. Palomo, Cement Concr. Res., 41, 750 (2011); https://doi.org/10.1016/j.cemconres.2011.03.016.
S.D. Wang, X.C. Pu, K.L. Scrivener and P.L. Pratt, Adv. Cement Res., 7, 93 (1995); https://doi.org/10.1680/adcr.1995.7.27.93.
J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, France, p. 28 (2008).
P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer, J. Mater. Sci., 42, 2917 (2007); https://doi.org/10.1007/s10853-006-0637-z.
D.L.Y. Kong, J.G. Sanjayan and K. Sagoe-Crentsil, Cement Concr. Res., 37, 1583 (2007); https://doi.org/10.1016/j.cemconres.2007.08.021.
S. Donatello, C. Kuenzel, A. Palomo and A. Fernández-Jiménez, Cement Concr. Compos., 45, 234 (2014); https://doi.org/10.1016/j.cemconcomp.2013.09.010.
T. Bakharev, Cement Concr. Res., 36, 1134 (2006); https://doi.org/10.1016/j.cemconres.2006.03.022.
A.M. Rashad and S.R. Zeedan, Constr. Build. Mater., 25, 3098 (2011); https://doi.org/10.1016/j.conbuildmat.2010.12.044.
S.A. Bernal, R.M. de Gutiérrez and J.L. Provis, Constr. Build. Mater., 33, 99 (2012); https://doi.org/10.1016/j.conbuildmat.2012.01.017.
C. Li, H. Sun and L. Li, Cement Concr. Res., 40, 1341 (2010); https://doi.org/10.1016/j.cemconres.2010.03.020.
S.M. Park, J.G. Jang, N.K. Lee and H.K. Lee, Cement Concr. Res., 89, 72 (2016); https://doi.org/10.1016/j.cemconres.2016.08.004.
V.F.F. Barbosa, K.J.D. MacKenzie and C. Thaumaturgo, Int. J. Inorg. Mater., 2, 309 (2000); https://doi.org/10.1016/S1466-6049(00)00041-6.
J.L. Provis, P. Duxson, G.C. Lukey and J.S.J. van Deventer, Chem. Mater., 17, 2976 (2005); https://doi.org/10.1021/cm050219i.
A. Ferna’ndez-Jimenez, A. Palomo, I. Sobrados and J. Sanz, Micropor. Mesopor. Mater., 91, 111 (2006); https://doi.org/10.1016/j.micromeso.2005.11.015.
Z. Zhang, H. Wang and J.L. Provis, J. Sustain. Cement-Based Mater., 1, 154 (2012); https://doi.org/10.1080/21650373.2012.752620.
K. Zheng, L. Chen and M. Gbozee, Constr. Build. Mater., 125, 1114 (2016); https://doi.org/10.1016/j.conbuildmat.2016.09.007.
A. Fernández-Jiménez and A. Palomo, Fuel, 82, 2259 (2003); https://doi.org/10.1016/S0016-2361(03)00194-7.
I. Catanescu, M. Georgescu and A. Melinescu, UPB Sci. Bull., 74, 1 (2012).