Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of ZnO/CuO Nanocomposite by Ultrasound Assisted Co-Precipitation Process using Rambutan Peel Extract
Corresponding Author(s) : Viet Binh Le
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
In this study, ZnO/CuO nanocomposites were synthesized by a ultrasound assisted co-precipitation method. Green synthesis of ZnO/CuO nanocomposite using rambutan peel extract as an efficient stabilizer agent has been investigated. Biosynthesized ZnO/CuO nanocomposites were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission electron microscopy (FESEM), energy dispersive X-ray (EDX) and UV-Vis spectroscopy. The FESEM result showed the size of nanocomposite was 30-100 nm and had the band gap ennergy of 2.37 eV.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys., 98, 041301 (2005); https://doi.org/10.1063/1.1992666
- N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy and R. Vetumperumal Appl. Nanosci., 6, 933 (2016); https://doi.org/10.1007/s13204-015-0499-2
- M. Aminuzzaman, L.P. Ying, W.-S. Goh and A. Watanabe, Bull. Mater. Sci., 41, 50 (2018); https://doi.org/10.1007/s12034-018-1568-4
- A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan and D. Wang, ACS Nano, 7, 11112 (2013); https://doi.org/10.1021/nn404838n
- M.A.M. Adnan, N.M. Julkapli and S.B.A. Hamid, Rev. Inorg. Chem., 36, 77 (2016); https://doi.org/10.1515/revic-2015-0015
- A.O. Juma, E.A.A. Arbab, C.M. Muiva, L.M. Lepodise and G.T. Mola, J. Alloys Compd., 723, 866 (2017); https://doi.org/10.1016/j.jallcom.2017.06.288
- C.-H. Lai, M.-Y. Lu and L.-J. Chen, J. Mater. Chem., 22, 19 (2012); https://doi.org/10.1039/C1JM13879K
- E. Gopinathan, G. Viruthagiri, N. Shanmugam and S.S. Priya, Optik, 126, 5830 (2015); https://doi.org/10.1016/j.ijleo.2015.09.014
- B. Li and Y. Wang, Superlattices Microstruct., 47, 615 (2010); https://doi.org/10.1016/j.spmi.2010.02.005
- R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan and A. Stephen, Mater. Sci. Eng. C, 33, 91 (2013); https://doi.org/10.1016/j.msec.2012.08.011
- T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, Nano-Micro Lett., 5, 163 (2013); https://doi.org/10.1007/BF03353746
- P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon and N. Ndiege, Appl. Surf. Sci., 258, 8192 (2012); https://doi.org/10.1016/j.apsusc.2012.05.021
- H.R. Ghaffarian, M. Saiedi, M.A. Sayyadnejad and A.M. Rashidi, Iran. J. Chem. Chem., 30, 1 (2011).
- R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan and S.I. Hong, Mater. Sci. Eng. C, 41, 17 (2014); https://doi.org/10.1016/j.msec.2014.04.025
- K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-Said, A.A. Alkhedhairy and J. Musarrat, J. Colloid Interface Sci., 472, 145 (2016); https://doi.org/10.1016/j.jcis.2016.03.021
- S. Fakhari, M. Jamzad and H. Kabiri Fard, Green Chem. Lett. Rev., 12, 19 (2019); https://doi.org/10.1080/17518253.2018.1547925
- H. Agarwal, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
- R. Mohammadi-Aloucheh, A. Habibi-Yangjeh, A. Bayrami, S. LatifiNavid and A. Asadi, J. Mater. Sci. Mater., 29, 13596 (2018); https://doi.org/10.1007/s10854-018-9487-0
- L. Sun, H. Zhang and Y. Zhuang, J. Food Sci., 77, C198 (2012); https://doi.org/10.1111/j.1750-3841.2011.02548.x
- Y. Yulizar, R. Bakri, D.O.B. Apriandanu and T. Hidayat, Nano-Struct. Nano-Objects, 16, 300 (2018); https://doi.org/10.1016/j.nanoso.2018.09.003
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K.S.W. Sing, Pure Appl. Chem., 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117
- M. Alhamed and W. Abdullah, J. Electron Devices, 7, 246 (2010).
- F. Ghodsi and H. Absalan, Acta Phys. Pol. A, 118, 659 (2010); https://doi.org/10.12693/APhysPolA.118.659
- D.Y. Nadargi, M.S. Tamboli, S.S. Patil, R.B. Dateer, I.S. Mulla, H. Choi and S.S. Suryavanshi, ACS Omega, 5, 8587 (2020); https://doi.org/10.1021/acsomega.9b04475
References
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys., 98, 041301 (2005); https://doi.org/10.1063/1.1992666
N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy and R. Vetumperumal Appl. Nanosci., 6, 933 (2016); https://doi.org/10.1007/s13204-015-0499-2
M. Aminuzzaman, L.P. Ying, W.-S. Goh and A. Watanabe, Bull. Mater. Sci., 41, 50 (2018); https://doi.org/10.1007/s12034-018-1568-4
A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan and D. Wang, ACS Nano, 7, 11112 (2013); https://doi.org/10.1021/nn404838n
M.A.M. Adnan, N.M. Julkapli and S.B.A. Hamid, Rev. Inorg. Chem., 36, 77 (2016); https://doi.org/10.1515/revic-2015-0015
A.O. Juma, E.A.A. Arbab, C.M. Muiva, L.M. Lepodise and G.T. Mola, J. Alloys Compd., 723, 866 (2017); https://doi.org/10.1016/j.jallcom.2017.06.288
C.-H. Lai, M.-Y. Lu and L.-J. Chen, J. Mater. Chem., 22, 19 (2012); https://doi.org/10.1039/C1JM13879K
E. Gopinathan, G. Viruthagiri, N. Shanmugam and S.S. Priya, Optik, 126, 5830 (2015); https://doi.org/10.1016/j.ijleo.2015.09.014
B. Li and Y. Wang, Superlattices Microstruct., 47, 615 (2010); https://doi.org/10.1016/j.spmi.2010.02.005
R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan and A. Stephen, Mater. Sci. Eng. C, 33, 91 (2013); https://doi.org/10.1016/j.msec.2012.08.011
T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, Nano-Micro Lett., 5, 163 (2013); https://doi.org/10.1007/BF03353746
P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon and N. Ndiege, Appl. Surf. Sci., 258, 8192 (2012); https://doi.org/10.1016/j.apsusc.2012.05.021
H.R. Ghaffarian, M. Saiedi, M.A. Sayyadnejad and A.M. Rashidi, Iran. J. Chem. Chem., 30, 1 (2011).
R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan and S.I. Hong, Mater. Sci. Eng. C, 41, 17 (2014); https://doi.org/10.1016/j.msec.2014.04.025
K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-Said, A.A. Alkhedhairy and J. Musarrat, J. Colloid Interface Sci., 472, 145 (2016); https://doi.org/10.1016/j.jcis.2016.03.021
S. Fakhari, M. Jamzad and H. Kabiri Fard, Green Chem. Lett. Rev., 12, 19 (2019); https://doi.org/10.1080/17518253.2018.1547925
H. Agarwal, S.V. Kumar and S. Rajeshkumar, Resource-Efficient Technol., 3, 406 (2017); https://doi.org/10.1016/j.reffit.2017.03.002
R. Mohammadi-Aloucheh, A. Habibi-Yangjeh, A. Bayrami, S. LatifiNavid and A. Asadi, J. Mater. Sci. Mater., 29, 13596 (2018); https://doi.org/10.1007/s10854-018-9487-0
L. Sun, H. Zhang and Y. Zhuang, J. Food Sci., 77, C198 (2012); https://doi.org/10.1111/j.1750-3841.2011.02548.x
Y. Yulizar, R. Bakri, D.O.B. Apriandanu and T. Hidayat, Nano-Struct. Nano-Objects, 16, 300 (2018); https://doi.org/10.1016/j.nanoso.2018.09.003
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K.S.W. Sing, Pure Appl. Chem., 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117
M. Alhamed and W. Abdullah, J. Electron Devices, 7, 246 (2010).
F. Ghodsi and H. Absalan, Acta Phys. Pol. A, 118, 659 (2010); https://doi.org/10.12693/APhysPolA.118.659
D.Y. Nadargi, M.S. Tamboli, S.S. Patil, R.B. Dateer, I.S. Mulla, H. Choi and S.S. Suryavanshi, ACS Omega, 5, 8587 (2020); https://doi.org/10.1021/acsomega.9b04475