Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Berberine Loaded Magnetic Nanoparticles for Breast Cancer Therapy on MDA-MB-231 Cells Lines
Corresponding Author(s) : C. Ronald Darwin
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
Berberine is an alkaloid naturally-derived from Berberis aristata and a family Berberidaceae exhibits a broad spectrum of pharmacological benefits, including antiviral and anticancer properties. The recent development of nanomedicine is an art of delivering drugs to the target-site by improving their safety and efficacy. In present study, four berberine-loaded magnetic nanoparticles (BBR/MNPs) were prepared using a modified co-precipitation method with calcination. The resulting BBR/MNPs were characterized by FTIR, XRD, HRSEM, zeta potential, VSM, loading efficiency, stability and in vitro release studies. The most proven magnetic nanoparticles formulation type in dissolution was followed by in vitro anticancer studies on MDA-MB-231 cells. XRD, FTIR and TGA results proved that the formed BBR/MNPs were ordered in their structure with iron, silanol groups and berberine moieties. The HRSEM reported the average particle size of MNPs varies from 100 to 250 nm after loading with berberine also had a regular spherical shape. The value of the zeta potential was -9 mV and 15 mV at pH 6 for bare MNPs and BBR/MNPs, respectively. Loading efficiency and stability were good at BBR/MCM-41MNP. The saturated magnetization (Ms) value of Fe-MCM-41 MNP (81.76 emu/g) was obtained by VSM analysis. In vitro dissolution studies of four BBR/MNPs at a three different pH 5.5, 6.5, 7.4 including BBR/MCM-41 MNP were 86%, 84% and 82%, respectively. In vitro anticancer studies with BBR/MCM-41-MNP on treated MDA-MB-231 breast cancer cells in comparison to standard doxorubicin. The MTT assay confirmed the cytotoxic effect of BBR/MCM-41-MNP in vitro. The resulting data were statistically analyzed using one-way Anova analysis with N = 3 replicates. The IC50 values (mean standard deviation) of BBR, BBR/MCM-41 MNP and standard doxorubicin were obtained as 16.754 ± 0.651, 6.750 ± 0.048, 4.955 ± 0.042 μg/mL with significant p < 0.0001. The best result was BBR/MCM-41 MNP with an average particle size 50 nm, which showed good drug loading efficiency and size stability above 7 days. Drug release was maximal (86%) at pH 5.5. The MTT-assay confirmed that BBR/MCM-41MNP exhibited more cytotoxicity on MDA-MB-231 cells than BBR, MCM-41MNP. The IC50 of BBR/MCM-41 was closed that of standard doxorubicin. The BBR/MCM-41MNP showed the optimum drug release with potent anticancer activity along with magnetic targeting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Tao, A. Shi, C. Lu, T. Song, Z. Zhang and J. Zhao, Cell Biochem. Biophys., 72, 333 (2015); https://doi.org/10.1007/s12013-014-0459-6
- S. Becker, Int. J. Gynaecol. Obstet., 131, 36 (2015); https://doi.org/10.1016/j.ijgo.2015.03.015
- A.G. Waks and E.P. Winer, JAMA, 321, 316 (2019); https://doi.org/10.1001/jama.2018.20751
- M. Zubair, S. Wang and N. Ali, Front. Pharmacol., 11, 632079 (2021); https://doi.org/10.3389/fphar.2020.632079
- M.R. Ataollahi, J. Sharifi, M.R. Paknahad and A. Paknahad, J. Med. Sci. Life, 8(Suppl. 4), 6 (2015).
- X. Fang, J. Cao and A. Shen, J. Drug Deliv. Sci. Technol., 57, 101662 (2020); https://doi.org/10.1016/j.jddst.2020.101662
- S.K.S. Kushwaha, A. Rastogi, A.K. Rai and S. Singh, Int. J. Pharmtech. Res., 4, 542 (2012).
- N. Harbeck, F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang and F. Cardoso, Nat. Rev. Dis. Primers, 5, 66 (2019); https://doi.org/10.1038/s41572-019-0111-2
- J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam and H.-S. Shin, J. Nanobiotechnology, 16, 71 (2018); https://doi.org/10.1186/s12951-018-0392-8
- S.F. Hasany, A. Rehman, R. Jose and I. Ahmed, AIP Conf. Proc., 1502, 298 (2012); https://doi.org/10.1063/1.4769153
- T.K. Indira and P.K. Lakshmi, Int. J. Pharm. Sci. Nanotechnol., 3, 1035 (2010).
- T. Guo, M. Lin, J. Huang, C. Zhou, W. Tian and H. Yu, J. Nanomater., 2018, 805147 (2018); https://doi.org/10.1155/2018/7805147
- H. Majidzadeh, M. Araj-Khodaei, M. Ghaffari, M. Torbati, J. Ezzati Nazhad Dolatabadi and M.R. Hamblin, Colloids Surf. B Biointerfaces, 194, 111188 (2020); https://doi.org/10.1016/j.colsurfb.2020.111188
- E. Mirhadi, M. Rezaee and B. Malaekeh-Nikouei, Biomed. Pharmacother., 104, 465 (2018); https://doi.org/10.1016/j.biopha.2018.05.067
- M. Javed Iqbal, C. Quispe, Z. Javed, H. Sadia, Q.R. Qadri, S. Raza, B. Salehi, N. Cruz-Martins, Z. Abdulwanis Mohamed, M. Sani Jaafaru, A.F. Abdull Razis and J. Sharifi-Rad, Front. Mol. Biosci., 7, 624494 (2021); https://doi.org/10.3389/fmolb.2020.624494
- V. Purcar, V. Raditoiu, C. Nichita, A. Balan, A. Raditoiu, S. Caprarescu, F.M. Raduly, R. Manea, R. Somoghi, C.-A. Nicolae, I. Raut and L. Jecu, Materials, 14, 2086 (2021); https://doi.org/10.3390/ma14082086
- M.S. Yilmaz, Ö.D. Özdemir and S. Piskin, Res. Chem. Intermed., 41, 199 (2015); https://doi.org/10.1007/s11164-013-1182-4
- X. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X. Cheng, A. Alghamdi, A.M. Abdullah, Y. Deng and D. Zhao, Chem. Mater., 28, 2356 (2016); https://doi.org/10.1021/acs.chemmater.6b00499
- B. Zhou, C.Y. Li, N. Qi, M. Jiang, B. Wang and Z.Q. Chen, Appl. Surf. Sci., 450, 31 (2018); https://doi.org/10.1016/j.apsusc.2018.03.223
- S.W. Song, K. Hidajat and S. Kawi, Langmuir, 21, 9568 (2005); https://doi.org/10.1021/la051167e
- R. Bhanumathi, M. Manivannan, R. Thangaraj and S. Kannan, ACS Omega, 3, 8317 (2018); https://doi.org/10.1021/acsomega.7b01347
- H. Štorkánová, S. Oreská, M. Špiritovic, B. Heømánková, K. Bubová, M. Komarc, K. Pavelka, J. Vencovský, J.H.W. Distler, L. Šenolt, R. Beèváø and M. Tomèík, Sci. Rep., 11, 1 (2021); https://doi.org/10.1038/s41598-020-79139-8
- M.M. Yallapu, S.F. Othman, E.T. Curtis, N.A. Bauer, N. Chauhan and D. Kumar, Int. J. Nanomedicine, 7, 1761 (2012); https://doi.org/10.2147/IJN.S29290
- N.A. Razak, N. Abu, W.Y. Ho, N.R. Zamberi, S. Tan, N.B. Alitheen, K. Long and S.K. Yeap, Sci. Rep., 9, 1514 (2019); https://doi.org/10.1038/s41598-018-37796-w
- K. El-Boubbou, R. Ali, S. Al-Humaid, A. Alhallaj, O.M. Lemine, M. Boudjelal and A. AlKushi, Pharmaceutics, 13, 553 (2021); https://doi.org/10.3390/pharmaceutics13040553
References
Z. Tao, A. Shi, C. Lu, T. Song, Z. Zhang and J. Zhao, Cell Biochem. Biophys., 72, 333 (2015); https://doi.org/10.1007/s12013-014-0459-6
S. Becker, Int. J. Gynaecol. Obstet., 131, 36 (2015); https://doi.org/10.1016/j.ijgo.2015.03.015
A.G. Waks and E.P. Winer, JAMA, 321, 316 (2019); https://doi.org/10.1001/jama.2018.20751
M. Zubair, S. Wang and N. Ali, Front. Pharmacol., 11, 632079 (2021); https://doi.org/10.3389/fphar.2020.632079
M.R. Ataollahi, J. Sharifi, M.R. Paknahad and A. Paknahad, J. Med. Sci. Life, 8(Suppl. 4), 6 (2015).
X. Fang, J. Cao and A. Shen, J. Drug Deliv. Sci. Technol., 57, 101662 (2020); https://doi.org/10.1016/j.jddst.2020.101662
S.K.S. Kushwaha, A. Rastogi, A.K. Rai and S. Singh, Int. J. Pharmtech. Res., 4, 542 (2012).
N. Harbeck, F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang and F. Cardoso, Nat. Rev. Dis. Primers, 5, 66 (2019); https://doi.org/10.1038/s41572-019-0111-2
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam and H.-S. Shin, J. Nanobiotechnology, 16, 71 (2018); https://doi.org/10.1186/s12951-018-0392-8
S.F. Hasany, A. Rehman, R. Jose and I. Ahmed, AIP Conf. Proc., 1502, 298 (2012); https://doi.org/10.1063/1.4769153
T.K. Indira and P.K. Lakshmi, Int. J. Pharm. Sci. Nanotechnol., 3, 1035 (2010).
T. Guo, M. Lin, J. Huang, C. Zhou, W. Tian and H. Yu, J. Nanomater., 2018, 805147 (2018); https://doi.org/10.1155/2018/7805147
H. Majidzadeh, M. Araj-Khodaei, M. Ghaffari, M. Torbati, J. Ezzati Nazhad Dolatabadi and M.R. Hamblin, Colloids Surf. B Biointerfaces, 194, 111188 (2020); https://doi.org/10.1016/j.colsurfb.2020.111188
E. Mirhadi, M. Rezaee and B. Malaekeh-Nikouei, Biomed. Pharmacother., 104, 465 (2018); https://doi.org/10.1016/j.biopha.2018.05.067
M. Javed Iqbal, C. Quispe, Z. Javed, H. Sadia, Q.R. Qadri, S. Raza, B. Salehi, N. Cruz-Martins, Z. Abdulwanis Mohamed, M. Sani Jaafaru, A.F. Abdull Razis and J. Sharifi-Rad, Front. Mol. Biosci., 7, 624494 (2021); https://doi.org/10.3389/fmolb.2020.624494
V. Purcar, V. Raditoiu, C. Nichita, A. Balan, A. Raditoiu, S. Caprarescu, F.M. Raduly, R. Manea, R. Somoghi, C.-A. Nicolae, I. Raut and L. Jecu, Materials, 14, 2086 (2021); https://doi.org/10.3390/ma14082086
M.S. Yilmaz, Ö.D. Özdemir and S. Piskin, Res. Chem. Intermed., 41, 199 (2015); https://doi.org/10.1007/s11164-013-1182-4
X. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X. Cheng, A. Alghamdi, A.M. Abdullah, Y. Deng and D. Zhao, Chem. Mater., 28, 2356 (2016); https://doi.org/10.1021/acs.chemmater.6b00499
B. Zhou, C.Y. Li, N. Qi, M. Jiang, B. Wang and Z.Q. Chen, Appl. Surf. Sci., 450, 31 (2018); https://doi.org/10.1016/j.apsusc.2018.03.223
S.W. Song, K. Hidajat and S. Kawi, Langmuir, 21, 9568 (2005); https://doi.org/10.1021/la051167e
R. Bhanumathi, M. Manivannan, R. Thangaraj and S. Kannan, ACS Omega, 3, 8317 (2018); https://doi.org/10.1021/acsomega.7b01347
H. Štorkánová, S. Oreská, M. Špiritovic, B. Heømánková, K. Bubová, M. Komarc, K. Pavelka, J. Vencovský, J.H.W. Distler, L. Šenolt, R. Beèváø and M. Tomèík, Sci. Rep., 11, 1 (2021); https://doi.org/10.1038/s41598-020-79139-8
M.M. Yallapu, S.F. Othman, E.T. Curtis, N.A. Bauer, N. Chauhan and D. Kumar, Int. J. Nanomedicine, 7, 1761 (2012); https://doi.org/10.2147/IJN.S29290
N.A. Razak, N. Abu, W.Y. Ho, N.R. Zamberi, S. Tan, N.B. Alitheen, K. Long and S.K. Yeap, Sci. Rep., 9, 1514 (2019); https://doi.org/10.1038/s41598-018-37796-w
K. El-Boubbou, R. Ali, S. Al-Humaid, A. Alhallaj, O.M. Lemine, M. Boudjelal and A. AlKushi, Pharmaceutics, 13, 553 (2021); https://doi.org/10.3390/pharmaceutics13040553