Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Isotherm and Thermodynamic Studies of Biosorption of Brilliant Green on Surface of Low Cost Biomass Obtained from Michelia champaca Leaf
Corresponding Author(s) : S. Baruah
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
The capacity to remove brilliant green from aqueous solutions through biosorption using the Michelia champaca leaf powder (MCLP), was examined in batch experiments. Almost 99.00% of brilliant green has been removed from 10 mg L-1 brilliant green solution and 93.22% from 50 mg L-1 brilliant green solution for 0.8 g L-1 biosorbent. The biosorption capacity of Michelia champaca leaf powder (MCLP) was independent on the pH of the brilliant green solution. For that reason all the adsorption experiments were done without adjusting the pH value. Langmuir monolayer sorption capacity, qm decreases from 200 to 55.56 mg g-1 (109.63 mg g-1, mean) with increase in MCLP amount from 0.2-1.0 g L-1. The adsorption capacity increases with speed of agitation and most favourable adsorption was achieved at 100 revolution per min (rpm). The extend of adsorption of brilliant green onto MCLP was observed to increase with increase in temperature indicating interaction between MCLP-brilliant green is endothermic in nature. The biosorption of brilliant green on MCLP was studied using Fourier transform infrared spectroscopy (FTIR), which indicates that the presence of brilliant green ions in the biomass, affects the bands correlated with −OH, −CHO, −CO and −CN groups. Complete characterization of parameters indicate MCLP to be an excellent biosorbent for treating wastewaters containing brilliant green.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A.H. Shibly and T.A. Tamanna, J. Textile Eng. Fashion Technol., 6, 71 (2020); https://doi.org/10.15406/jteft.2020.06.00232
- P. Kumar, H. Bhati, A. Rani and R. Sing, Adv. Life Sci., 4, 38 (2015).
- S.M. Gajare and S. Menghani, J. Algal Biomass Util., 3, 65 (2012).
- I.L. Horciu, C. Zaharia, A.C. Blaga, L. Rusu and D. Suteu, Appl. Sci., 11, 4498 (2021); https://doi.org/10.3390/app11104498
- R. Al-Tohamya, S.S. Aliab, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu and J. Sun, Ecotoxicol. Environ. Saf., 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
- I. Michalak, K. Chojnacka and A. Witek-Krowiak, Appl. Biochem. Biotechnol., 170, 1389 (2013); https://doi.org/10.1007/s12010-013-0269-0
- A.M.Elgarahy, K.Z. Elwakeel, S.H. Mohammad and G.A. Elshoubaky, Clean. Eng. Technol., 4, 100209 (2021); https://doi.org/10.1016/j.clet.2021.100209
- A.H. Alabi, A.I. Buhari-Alade, F.O. Sholaru and R.F. Awoyemi, Int. J. Environ. Sci., 5, 154 (2016).
- D. Balarak, T.J. Al-Musawi, I.A. Mohammed and H. Abasizadeh, SN Appl. Sci., 2, 1015 (2020); https://doi.org/10.1007/s42452-020-2841-x
- K.C. de Castro, A.S. Cossolin, H.C.O. dos Reis and E.B. de Morais, Braz. Arch. Biol. Technol., 60, e160411 (2017); https://doi.org/10.1590/1678-4324-2017160101
- I.A. Amar, E.A. Zayid, S.A. Dhikeel and M.Y. Najem, Biointerf. Res. Appl. Chem., 12, 7845 (2022); https://doi.org/10.33263/BRIAC126.78457862
- E.S. Priya and P.S. Selvan, Arab. J. Chem., 10(Suppl. 2), S3548 (2017); https://doi.org/10.1016/j.arabjc.2014.03.002
- S. Mustafa, H.N. Bhatti, M. Maqbool and M. Iqbal, J. Water Process Eng., 41, 102009 (2021); https://doi.org/10.1016/j.jwpe.2021.102009
- C. Filote, M. Ros, R.M. Hlihor, P. Cozma, I.M. Simion, M. Apostol and M. Gavrilescu, Processes, 9, 1696 (2021); https://doi.org/10.3390/pr9101696
- T. Skripkina, E. Podgorbunskikh, A. Bychkov and O. Lomovsky, Coatings, 10, 1115 (2020); https://doi.org/10.3390/coatings10111115
- B. Das, N.K. Mondal, R. Bhaumik and P. Roy, Int. J. Environ. Sci. Technol., 11, 1101 (2014); https://doi.org/10.1007/s13762-013-0279-z
- D. Balarak, F.K. Mostafapour and H. Azarpira, Biosci. Biotechnol. Res. Commun., 9, 558 (2016); https://doi.org/10.21786/bbrc/9.3/32
- A. Balouch, M. Kolachi, F.N. Talpur, H. Khan and M.I. Bhanger, Am. J. Anal. Chem., 4, 221 (2013); https://doi.org/10.4236/ajac.2013.45028
- G.A.E. Chaghaby, E.S. Ramis and A.F. Ahmad, Asian J. Appl. Chem. Res., 1, 9 (2018).
- H. Mazaheri, M. Ghaedi, A. Asfaram and S. Hajati, J. Mol. Liq., 219, 667 (2016); https://doi.org/10.1016/j.molliq.2016.03.050
- V.K. Singh, A. Soni and R. Singh, Orient. J. Chem., 32, 2621 (2016); https://doi.org/10.13005/ojc/320534
- S. Sawasdee and P. Watcharabundit, Chiang Mai Univ. J. Nat. Sci., 15, 221 (2016).
- J. Sharma, A. Sharma and K.G. Bhattacharyya, Ind. Eng. Chem. Res., 47, 5433 (2008); https://doi.org/10.1186/s12951-018-0408-4
- F.A.S. Shah, S.A. Malak and G.A. Usmani, Am. J. Sustain. Cities Soc., 5, 188 (2016).
- B.C. da Silva, A. Zanutto and J.M.T.A. Pietrobelli, Adsorpt. Sci. Technol., 37, 236 (2019); https://doi.org/10.1177/0263617418823995
References
M.A.H. Shibly and T.A. Tamanna, J. Textile Eng. Fashion Technol., 6, 71 (2020); https://doi.org/10.15406/jteft.2020.06.00232
P. Kumar, H. Bhati, A. Rani and R. Sing, Adv. Life Sci., 4, 38 (2015).
S.M. Gajare and S. Menghani, J. Algal Biomass Util., 3, 65 (2012).
I.L. Horciu, C. Zaharia, A.C. Blaga, L. Rusu and D. Suteu, Appl. Sci., 11, 4498 (2021); https://doi.org/10.3390/app11104498
R. Al-Tohamya, S.S. Aliab, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu and J. Sun, Ecotoxicol. Environ. Saf., 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
I. Michalak, K. Chojnacka and A. Witek-Krowiak, Appl. Biochem. Biotechnol., 170, 1389 (2013); https://doi.org/10.1007/s12010-013-0269-0
A.M.Elgarahy, K.Z. Elwakeel, S.H. Mohammad and G.A. Elshoubaky, Clean. Eng. Technol., 4, 100209 (2021); https://doi.org/10.1016/j.clet.2021.100209
A.H. Alabi, A.I. Buhari-Alade, F.O. Sholaru and R.F. Awoyemi, Int. J. Environ. Sci., 5, 154 (2016).
D. Balarak, T.J. Al-Musawi, I.A. Mohammed and H. Abasizadeh, SN Appl. Sci., 2, 1015 (2020); https://doi.org/10.1007/s42452-020-2841-x
K.C. de Castro, A.S. Cossolin, H.C.O. dos Reis and E.B. de Morais, Braz. Arch. Biol. Technol., 60, e160411 (2017); https://doi.org/10.1590/1678-4324-2017160101
I.A. Amar, E.A. Zayid, S.A. Dhikeel and M.Y. Najem, Biointerf. Res. Appl. Chem., 12, 7845 (2022); https://doi.org/10.33263/BRIAC126.78457862
E.S. Priya and P.S. Selvan, Arab. J. Chem., 10(Suppl. 2), S3548 (2017); https://doi.org/10.1016/j.arabjc.2014.03.002
S. Mustafa, H.N. Bhatti, M. Maqbool and M. Iqbal, J. Water Process Eng., 41, 102009 (2021); https://doi.org/10.1016/j.jwpe.2021.102009
C. Filote, M. Ros, R.M. Hlihor, P. Cozma, I.M. Simion, M. Apostol and M. Gavrilescu, Processes, 9, 1696 (2021); https://doi.org/10.3390/pr9101696
T. Skripkina, E. Podgorbunskikh, A. Bychkov and O. Lomovsky, Coatings, 10, 1115 (2020); https://doi.org/10.3390/coatings10111115
B. Das, N.K. Mondal, R. Bhaumik and P. Roy, Int. J. Environ. Sci. Technol., 11, 1101 (2014); https://doi.org/10.1007/s13762-013-0279-z
D. Balarak, F.K. Mostafapour and H. Azarpira, Biosci. Biotechnol. Res. Commun., 9, 558 (2016); https://doi.org/10.21786/bbrc/9.3/32
A. Balouch, M. Kolachi, F.N. Talpur, H. Khan and M.I. Bhanger, Am. J. Anal. Chem., 4, 221 (2013); https://doi.org/10.4236/ajac.2013.45028
G.A.E. Chaghaby, E.S. Ramis and A.F. Ahmad, Asian J. Appl. Chem. Res., 1, 9 (2018).
H. Mazaheri, M. Ghaedi, A. Asfaram and S. Hajati, J. Mol. Liq., 219, 667 (2016); https://doi.org/10.1016/j.molliq.2016.03.050
V.K. Singh, A. Soni and R. Singh, Orient. J. Chem., 32, 2621 (2016); https://doi.org/10.13005/ojc/320534
S. Sawasdee and P. Watcharabundit, Chiang Mai Univ. J. Nat. Sci., 15, 221 (2016).
J. Sharma, A. Sharma and K.G. Bhattacharyya, Ind. Eng. Chem. Res., 47, 5433 (2008); https://doi.org/10.1186/s12951-018-0408-4
F.A.S. Shah, S.A. Malak and G.A. Usmani, Am. J. Sustain. Cities Soc., 5, 188 (2016).
B.C. da Silva, A. Zanutto and J.M.T.A. Pietrobelli, Adsorpt. Sci. Technol., 37, 236 (2019); https://doi.org/10.1177/0263617418823995