Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Bis(indolyl)methane and 8-Hydroxyquinoline Derivative based Mixed Ligand Metal Complexes: Synthesis, Characterization, Antimicrobial Screening and Molecular Docking Study
Corresponding Author(s) : P.T. Tryambake
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
Present study described the synthesis of mixed ligand metal complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II). Metal complexes were synthesized by two ligands such as 8-hydroxyquinoline derivative (primary ligand) and bis(indolyl)methane derivative (secondary ligand). The ligands and their transition metal complexes were characterized by IR, 1H NMR, mass spectrum, elemental analysis, TGA, electronic spectra (UV) and molar conductance. The results of analysis predicted that both ligands are bidentate and resulting complexes are ML1L2 type with molar ratio 1:1:1. To screen their biological potential, the antibacterial and antifungal activity of synthesized compounds have also been investigated. Results of antimicrobial activity were expressed as minimum inhibitory concentration (MIC). Synthesized complexes showed moderate to excellent antimicrobial activity against pathogens. Further, the more potent antimicrobial complexes of Fe(II) and Co(II) were docked with topoisomerase II as a receptor protein, Fe-complex bound to Met1113 (2.53 Å), Asn1296 (2.86 Å) and with nucleotide DC12 (3.28 Å). Similarly, Co-complex bound to Lys1276 (2.27 Å), Leu1280 (2.40 Å), Thr1325 (2.37 Å) and Gly1332 (2.42 Å) via intermolecular hydrogen bonding.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Raman, S. Sobha and M. Selvaganapathy, Monatsh. Chem., 143, 1487 (2012); https://doi.org/10.1007/s00706-012-0718-4
- W. Ahmad, S.A. Khan, K.S. Munawar, A. Khalid and S. Kawanl, Trop. J. Pharm. Res., 16, 1137 (2017); https://doi.org/10.4314/tjpr.v16i5.23
- B. Duff, V. Reddy Thangella, B.S. Creaven, M. Walsh and D.A. Egan, Eur. J. Pharmacol., 689, 45 (2012); https://doi.org/10.1016/j.ejphar.2012.06.004
- S.Y. Ebrahimipour, Z.R. Ranjabr, E.T. Kermani, B.P. Amiri, H.A. Rudbari, A. Saccá and F.A. Hoseinzade, Transition Met. Chem., 40, 39 (2015); https://doi.org/10.1007/s11243-014-9887-9
- N. Okamura, T. Nakamura, S. Yagi, T. Maeda, H. Nakazumi, H. Fujiwara and S. Koseki, RSC Adv., 6, 51435 (2016); https://doi.org/10.1039/C6RA09385J
- T.T. Al-Nahary, J. Saudi Chem. Soc., 13, 253 (2009); https://doi.org/10.1016/j.jscs.2009.10.004
- D. Avci, S. Altürk, F. Sönmez, Ö. Tamer, A. Basoglu, Y. Atalay, B.Z. Kurt and N. Dege, J. Mol. Struct., 1197, 645 (2019); https://doi.org/10.1016/j.molstruc.2019.07.039
- P.P. Utthra, G. Kumaravel and N. Raman, J. Mol. Struct., 1150, 374 (2017); https://doi.org/10.1016/j.molstruc.2017.09.002
- G.W. Gribble, J. Chem. Soc. Perkin Trans. I, 1045 (2000); https://doi.org/10.1039/a909834h
- R.J. Sundberg, The Chemistry of Indoles, Academic Press: New York (1970).
- T. Pillaiyar, M. Dawood, H. Irum and C.E. Müller, ARKIVOC, 1 (2018); https://doi.org/10.24820/ark.5550190.p010.259
- M. Lounasmaa and A. Tolvanen, Nat. Prod. Rep., 17, 175 (2000); https://doi.org/10.1039/a809402k
- A. Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, L. Landi, C. Prata, M.V. Berridge, C. Grasso, H.-H. Fiebig, G. Kelter, A.M. Burger and M.W. Kunkel, J. Med. Chem., 51, 4563 (2008); https://doi.org/10.1021/jm800194k
- A. Bahuguna, A. Singh, P. Kumar, D. Dhasmana, V. Krishnan and N. Garg, Comput. Biol. Med., 116, 103574 (2020); https://doi.org/10.1016/j.compbiomed.2019.103574
- A. Kamal, M.N.A. Khan, K. Srinivasa Reddy, Y.V.V. Srikanth, S. Kaleem Ahmed, K. Pranay Kumar and U.S.N. Murthy, J. Enzyme Inhib. Med. Chem., 24, 559 (2009); https://doi.org/10.1080/14756360802292974
- M. Shiri, M.A. Zolfigol, H.G. Kruger and Z. Tanbakouchian, Chem. Rev., 110, 2250 (2010); https://doi.org/10.1021/cr900195a
- B.S. Hurlbert, R. Ferone, T.A. Herrmann, G.H. Hitchings, M. Barnett and S.R.M. Bushby, J. Med. Chem., 11, 711 (1968); https://doi.org/10.1021/jm00310a017
- X. Mao, X. Li, R. Sprangers, X. Wang, A. Venugopal, T. Wood, Y. Zhang, D.A. Kuntz, E. Coe, S. Trudel, D. Rose, R.A. Batey, L.E. Kay and A.D. Schimmer, Leukemia, 23, 585 (2009); https://doi.org/10.1038/leu.2008.232
- J.M. Singh, J. Med. Chem., 13, 1018 (1970); https://doi.org/10.1021/jm00299a066
- L.F. Miller and R.E. Bambury, J. Med. Chem., 15, 415 (1972); https://doi.org/10.1021/jm00274a023
- N.T. Huy, D.T. Uyen, A. Maeda, D.T.X. Trang, T. Oida, S. Harada and K. Kamei, Antimicrob. Agents Chemother., 51, 350 (2007); https://doi.org/10.1128/AAC.00985-06
- V. Prachayasittikul, V. Prachayasittikul, S. Prachayasittikul and S. Ruchirawat, Drug, Des. Devel. Ther., 7, 157 (2013); https://doi.org/10.2147/DDDT.S49763
- Z.H. Khalil, A.A. Abdel-Hafez, A.A. Geies and A.M. Kamal El-Dean, Bull. Chem. Soc. Jpn., 64, 668 (1991); https://doi.org/10.1246/bcsj.64.668
- S.S. Borhade and P.T. Tryambake, Asian J. Chem., 33, 885 (2021); https://doi.org/10.14233/ajchem.2021.23110
- M. El-Sayed, K. Mahmoud and A. Hilgeroth, Curr. Chem. Lett., 3, 7 (2014); https://doi.org/10.5267/j.ccl.2013.10.003
- I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- A. Hussain, M.A. Rather, M.S. Dar, N.A. Dangroo, M.A. Aga, A. Qayum, A.M. Shah, Z. Ahmad, M.J. Dar and Q.P. Hassan, Microbiol. Res., 207, 196 (2018); https://doi.org/10.1016/j.micres.2017.12.004
- D. Steverding, P. Evans, L. Msika, B. Riley, J. Wallington and S. Schelenz, Med. Mycol., 50, 333 (2012); https://doi.org/10.3109/13693786.2011.609186
- B.D. Bax, P.F. Chan, D.S. Eggleston, A. Fosberry, D.R. Gentry, F. Gorrec, I. Giordano, M.M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones, K.K. Brown, C.J. Lewis, E.W. May, M.R. Saunders, O. Singh, C.E. Spitzfaden, C. Shen, A. Shillings, A.J. Theobald, A. Wohlkonig, N.D. Pearson and M.N. Gwynn, Nature, 466, 935 (2010); https://doi.org/10.1038/nature09197
- BIOVIA Discovery Studio Modeling Environment, Release 2017, San Diego (2016).
- A. Rai, T.K. Gupta, S. Kini, A. Kunwar, A. Surolia and D. Panda, Biochem. Pharmacol., 86, 378 (2013); https://doi.org/10.1016/j.bcp.2013.05.024
- W.L. DeLano, The PyMOL Molecular Graphics System, Version 1.1, Schrödinger LLC (2002).
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- Z.H. Chohan and M. Praveen, Appl. Organomet. Chem., 15, 617 (2001); https://doi.org/10.1002/aoc.179
- F.A. El-Saied, T.A. Salem, M.M.E. Shakdofa, A.N. Al-Hakimi and A. Radwan, Beni-Suef Univ. J. Basic Appl. Sci., 7, 420 (2018); https://doi.org/10.1016/j.bjbas.2017.09.002
- K.D. Patel and H.S. Patel, Arab. J. Chem., 10, S1328 (2017); https://doi.org/10.1016/j.arabjc.2013.03.019
- S. Indira, G. Vinoth, M. Bharathi and K.S. Bharathi, J. Mol. Struct., 1198, 126886 (2019); https://doi.org/10.1016/j.molstruc.2019.126886
- D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975); https://doi.org/10.1021/ja00839a011
- A.S.A. Zidan, A.I. El-Said and M.S. El-Meligy, J. Therm. Anal. Calorim., 62, 665 (2000); https://doi.org/10.1023/A:1026761007006
- D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2
- P. Bharati, A. Bharti, M.K. Bharty, S. Kashyap, U.P. Singh and N.K. Singh, Polyhedron, 63, 222 (2013); https://doi.org/10.1016/j.poly.2013.07.027
References
N. Raman, S. Sobha and M. Selvaganapathy, Monatsh. Chem., 143, 1487 (2012); https://doi.org/10.1007/s00706-012-0718-4
W. Ahmad, S.A. Khan, K.S. Munawar, A. Khalid and S. Kawanl, Trop. J. Pharm. Res., 16, 1137 (2017); https://doi.org/10.4314/tjpr.v16i5.23
B. Duff, V. Reddy Thangella, B.S. Creaven, M. Walsh and D.A. Egan, Eur. J. Pharmacol., 689, 45 (2012); https://doi.org/10.1016/j.ejphar.2012.06.004
S.Y. Ebrahimipour, Z.R. Ranjabr, E.T. Kermani, B.P. Amiri, H.A. Rudbari, A. Saccá and F.A. Hoseinzade, Transition Met. Chem., 40, 39 (2015); https://doi.org/10.1007/s11243-014-9887-9
N. Okamura, T. Nakamura, S. Yagi, T. Maeda, H. Nakazumi, H. Fujiwara and S. Koseki, RSC Adv., 6, 51435 (2016); https://doi.org/10.1039/C6RA09385J
T.T. Al-Nahary, J. Saudi Chem. Soc., 13, 253 (2009); https://doi.org/10.1016/j.jscs.2009.10.004
D. Avci, S. Altürk, F. Sönmez, Ö. Tamer, A. Basoglu, Y. Atalay, B.Z. Kurt and N. Dege, J. Mol. Struct., 1197, 645 (2019); https://doi.org/10.1016/j.molstruc.2019.07.039
P.P. Utthra, G. Kumaravel and N. Raman, J. Mol. Struct., 1150, 374 (2017); https://doi.org/10.1016/j.molstruc.2017.09.002
G.W. Gribble, J. Chem. Soc. Perkin Trans. I, 1045 (2000); https://doi.org/10.1039/a909834h
R.J. Sundberg, The Chemistry of Indoles, Academic Press: New York (1970).
T. Pillaiyar, M. Dawood, H. Irum and C.E. Müller, ARKIVOC, 1 (2018); https://doi.org/10.24820/ark.5550190.p010.259
M. Lounasmaa and A. Tolvanen, Nat. Prod. Rep., 17, 175 (2000); https://doi.org/10.1039/a809402k
A. Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, L. Landi, C. Prata, M.V. Berridge, C. Grasso, H.-H. Fiebig, G. Kelter, A.M. Burger and M.W. Kunkel, J. Med. Chem., 51, 4563 (2008); https://doi.org/10.1021/jm800194k
A. Bahuguna, A. Singh, P. Kumar, D. Dhasmana, V. Krishnan and N. Garg, Comput. Biol. Med., 116, 103574 (2020); https://doi.org/10.1016/j.compbiomed.2019.103574
A. Kamal, M.N.A. Khan, K. Srinivasa Reddy, Y.V.V. Srikanth, S. Kaleem Ahmed, K. Pranay Kumar and U.S.N. Murthy, J. Enzyme Inhib. Med. Chem., 24, 559 (2009); https://doi.org/10.1080/14756360802292974
M. Shiri, M.A. Zolfigol, H.G. Kruger and Z. Tanbakouchian, Chem. Rev., 110, 2250 (2010); https://doi.org/10.1021/cr900195a
B.S. Hurlbert, R. Ferone, T.A. Herrmann, G.H. Hitchings, M. Barnett and S.R.M. Bushby, J. Med. Chem., 11, 711 (1968); https://doi.org/10.1021/jm00310a017
X. Mao, X. Li, R. Sprangers, X. Wang, A. Venugopal, T. Wood, Y. Zhang, D.A. Kuntz, E. Coe, S. Trudel, D. Rose, R.A. Batey, L.E. Kay and A.D. Schimmer, Leukemia, 23, 585 (2009); https://doi.org/10.1038/leu.2008.232
J.M. Singh, J. Med. Chem., 13, 1018 (1970); https://doi.org/10.1021/jm00299a066
L.F. Miller and R.E. Bambury, J. Med. Chem., 15, 415 (1972); https://doi.org/10.1021/jm00274a023
N.T. Huy, D.T. Uyen, A. Maeda, D.T.X. Trang, T. Oida, S. Harada and K. Kamei, Antimicrob. Agents Chemother., 51, 350 (2007); https://doi.org/10.1128/AAC.00985-06
V. Prachayasittikul, V. Prachayasittikul, S. Prachayasittikul and S. Ruchirawat, Drug, Des. Devel. Ther., 7, 157 (2013); https://doi.org/10.2147/DDDT.S49763
Z.H. Khalil, A.A. Abdel-Hafez, A.A. Geies and A.M. Kamal El-Dean, Bull. Chem. Soc. Jpn., 64, 668 (1991); https://doi.org/10.1246/bcsj.64.668
S.S. Borhade and P.T. Tryambake, Asian J. Chem., 33, 885 (2021); https://doi.org/10.14233/ajchem.2021.23110
M. El-Sayed, K. Mahmoud and A. Hilgeroth, Curr. Chem. Lett., 3, 7 (2014); https://doi.org/10.5267/j.ccl.2013.10.003
I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
A. Hussain, M.A. Rather, M.S. Dar, N.A. Dangroo, M.A. Aga, A. Qayum, A.M. Shah, Z. Ahmad, M.J. Dar and Q.P. Hassan, Microbiol. Res., 207, 196 (2018); https://doi.org/10.1016/j.micres.2017.12.004
D. Steverding, P. Evans, L. Msika, B. Riley, J. Wallington and S. Schelenz, Med. Mycol., 50, 333 (2012); https://doi.org/10.3109/13693786.2011.609186
B.D. Bax, P.F. Chan, D.S. Eggleston, A. Fosberry, D.R. Gentry, F. Gorrec, I. Giordano, M.M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones, K.K. Brown, C.J. Lewis, E.W. May, M.R. Saunders, O. Singh, C.E. Spitzfaden, C. Shen, A. Shillings, A.J. Theobald, A. Wohlkonig, N.D. Pearson and M.N. Gwynn, Nature, 466, 935 (2010); https://doi.org/10.1038/nature09197
BIOVIA Discovery Studio Modeling Environment, Release 2017, San Diego (2016).
A. Rai, T.K. Gupta, S. Kini, A. Kunwar, A. Surolia and D. Panda, Biochem. Pharmacol., 86, 378 (2013); https://doi.org/10.1016/j.bcp.2013.05.024
W.L. DeLano, The PyMOL Molecular Graphics System, Version 1.1, Schrödinger LLC (2002).
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
Z.H. Chohan and M. Praveen, Appl. Organomet. Chem., 15, 617 (2001); https://doi.org/10.1002/aoc.179
F.A. El-Saied, T.A. Salem, M.M.E. Shakdofa, A.N. Al-Hakimi and A. Radwan, Beni-Suef Univ. J. Basic Appl. Sci., 7, 420 (2018); https://doi.org/10.1016/j.bjbas.2017.09.002
K.D. Patel and H.S. Patel, Arab. J. Chem., 10, S1328 (2017); https://doi.org/10.1016/j.arabjc.2013.03.019
S. Indira, G. Vinoth, M. Bharathi and K.S. Bharathi, J. Mol. Struct., 1198, 126886 (2019); https://doi.org/10.1016/j.molstruc.2019.126886
D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975); https://doi.org/10.1021/ja00839a011
A.S.A. Zidan, A.I. El-Said and M.S. El-Meligy, J. Therm. Anal. Calorim., 62, 665 (2000); https://doi.org/10.1023/A:1026761007006
D.P. Singh, R. Kumar, V. Malik and P. Tyagi, Transition Met. Chem., 32, 1051 (2007); https://doi.org/10.1007/s11243-007-0279-2
P. Bharati, A. Bharti, M.K. Bharty, S. Kashyap, U.P. Singh and N.K. Singh, Polyhedron, 63, 222 (2013); https://doi.org/10.1016/j.poly.2013.07.027