Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Zinc(II) Complexes of Schiff Bases Derived from Bis-(2-hydrazino-1,3,4-thiadiazole-5-yl)Arene/Alkanes: Synthesis, Spectral Characterization and Biological Properties
Corresponding Author(s) : S.K. Sengupta
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
A novel series of zinc(II) complexes of type [ZnL(H2O)2], has been synthesized by the reaction of zinc(II) acetate dihydrate with Schiff bases (H2L) derived from bis-(2-hydrazino-1,3,4-thiadiazole-5-yl)arene/alkanes and 2-hydroxynaphthaldehyde/3,5-dichlorosalicyldehyde in presence of a base. The structures of all the zinc complexes were proposed by elemental analysis and spectroscopic data (IR, 1H, 13C NMR). TGA investigations were carried out to confirm the presence of coordinated water molecules in the zinc complexes. The powder crystal structure of one particular zinc complex has been analyzed by XRD diffraction method and SEM studies have been carried out to investigate the surface morphology. The biological studies reveal that the synthesized zinc complexes possess good antimicrobial properties against different species of pathogenic fungi and bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Hu, C.-Y. Li, X.-M. Wang, Y.-H. Yang and H.-L. Zhu, Chem. Rev., 114, 5572 (2014); https://doi.org/10.1021/cr400131u
- A. Kudelko, M. Olesiejuk, M. Luczynski, M. Swiatkowski, T. Sieranski and R. Kruszynski, Molecules, 25, 2822 (2020); https://doi.org/10.3390/molecules25122822
- A.S. Shawali, J. Adv. Res., 5, 1 (2014); https://doi.org/10.1016/j.jare.2013.01.004
- A.K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R.K. Agrawal, Chem. Biol. Durg Des., 81, 557 (2013); https://doi.org/10.1111/cbdd.12125
- K.I. Aly, O. Younis, N.S. Al-Muaikel, A.A. Atalla, A.-B.A.A.M. ElAdasy and A.R. Abdellah, J. Appl. Polym. Sci., 136, 47770 (2019); https://doi.org/10.1002/app.47770
- A.K. Sharma and S. Chandra, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 81, 424 (2011); https://doi.org/10.1016/j.saa.2011.06.032
- M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015
- G.A. Bohach, D.J. Fast, R.D. Nelson, P.M. Schlievert, J. Rodes, A. Blei, J.P. Benhamou, J. Reichen and M. Rizzetto, The Textbook of Hepatology: From Basic Science to Clinical Practice, Wiley Blackwell: Oxford (UK), pp. 1029 (2007).
- N. Demirbas, S.A. Karaoglu, A. Demirbas and K. Sancak, Eur. J. Med. Chem., 39, 793 (2004); https://doi.org/10.1016/j.ejmech.2004.06.007
- D. Sriram, P. Yogeeswari, N.S. Myneedu and V. Saraswat, Bioorg. Med. Chem. Lett., 16, 2127 (2006); https://doi.org/10.1016/j.bmcl.2006.01.050
- G. Cerchiaro, K. Aquilano, G. Filomeni, G. Rotilio, M.R. Ciriolo and A.M.D.C. Ferreira, J. Inorg. Biochem., 99, 1433 (2005); https://doi.org/10.1016/j.jinorgbio.2005.03.013
- S. Chandra, S. Bargujar, R. Nirwal, K. Qanungo and S.K. Sharma, Spectrochim. Acta A, 113, 164 (2013); https://doi.org/10.1016/j.saa.2013.04.114
- A. Bhattacharya, T. Singh, V.K. Verma and N. Prasad, Tribol. Int., 28, 189 (1995); https://doi.org/10.1016/0301-679X(95)98966-H
- H. Tao, H. Tian, S. Jiang, X. Xiang, Y. Lin, W. Ahmed, R. Tang and Z.- N. Cui, Pestic. Biochem. Physiol., 160, 87 (2019); https://doi.org/10.1016/j.pestbp.2019.07.005
- V.A. Ivolgina and M.S. Chernov’yants, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 199, 315 (2018); https://doi.org/10.1016/j.saa.2018.03.069
- Z.M. Tabatabaei, P. Foroumadi, M. Toolabi, F. Goli, S. Moghimi, S.K. Ardestani and A. Foroumadi, Bioorg. Med. Chem., 27, 3682 (2019); https://doi.org/10.1016/j.bmc.2019.07.009
- J. Zhang, X. Wang, J. Yang, L. Guo, X. Wang, B. Song, W. Dong and W. Wang, Eur. J. Med. Chem., 186, 111897 (2020); https://doi.org/10.1016/j.ejmech.2019.111897
- I. Budziak, D. Karcz, M. Makowski, B. Myœliwa-Kurdziel, K. Kasprzak, A. Matwijczuk, E. Chruœciel, A. Oniszczuk, L. Adwent and A. Matwijczuk, J. Mol. Liq., 291, 111261 (2019); https://doi.org/10.1016/j.molliq.2019.111261
- M.R. Mahmoud, M.M.A. Hamed and H.M.A. Salman, Spectrochim. Acta, 44, 1185 (1988); https://doi.org/10.1016/0584-8539(88)80090-4
- B. Bak, D. Christensen, L. Hansen-Nygaard, L. Lipschitz and J. RastrupAndersen, J. Mol. Spectrosc., 9, 225 (1962); https://doi.org/10.1016/0022-2852(62)90231-X
- F. Bentiss, M. Lagrenee, H. Vezin, J.-P. Wignacourt and E.M. Holt, Polyhedron, 23, 1903 (2004); https://doi.org/10.1016/j.poly.2004.04.025
- A.K. Singh, O.P. Pandey and S.K. Sengupta, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 113, 393 (2013); https://doi.org/10.1016/j.saa.2013.04.045
- H, Muglu, H. Yakan and H.A. Shouaib, J. Mol. Struct., 1203, 127470 (2020); https://doi.org/10.1016/j.molstruc.2019.127470
- Y. Deswal, S. Asija, A. Dubey, L. Deswal, D. Kumar, D. Kumar Jindal and J. Devi, J. Mol. Struct., 1253, 132266 (2022); https://doi.org/10.1016/j.molstruc.2021.132266
- E. Yabas, E. Bicer and R. Katirci, Opt. Mater., 122, 111808 (2021); https://doi.org/10.1016/j.optmat.2021.111808
- G. Maffii, E. Testa and R. Ettorre, Chem. Abstr., 53, 2211a (1959).
- M.A. Epishina, A.S. Kulikov, N.V. Ignat’ev, M. Schulte and N.N. Makhova, Mendeleev Commun., 21, 331 (2011); https://doi.org/10.1016/j.mencom.2011.11.013
- B. Ashutosh, J. Ankur, N.R. Kumar, G. Sonia, S. Niharika, D. Vivek and S. Pramod, Int. J. Pharm. Sci. Drug Res., 1, 207 (2009).
- J. Coats, Eds.: R.A. Meyers, Encyclopedia of Analytical Chemistry, p. 10815 (2000).
- U. Holzwarth and N. Gibson, Nanotechnology, 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145
- K. Mahiwal, P. Kumar and B. Narasimhan, Med. Chem. Res., 21, 293 (2012); https://doi.org/10.1007/s00044-010-9537-5
References
Y. Hu, C.-Y. Li, X.-M. Wang, Y.-H. Yang and H.-L. Zhu, Chem. Rev., 114, 5572 (2014); https://doi.org/10.1021/cr400131u
A. Kudelko, M. Olesiejuk, M. Luczynski, M. Swiatkowski, T. Sieranski and R. Kruszynski, Molecules, 25, 2822 (2020); https://doi.org/10.3390/molecules25122822
A.S. Shawali, J. Adv. Res., 5, 1 (2014); https://doi.org/10.1016/j.jare.2013.01.004
A.K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R.K. Agrawal, Chem. Biol. Durg Des., 81, 557 (2013); https://doi.org/10.1111/cbdd.12125
K.I. Aly, O. Younis, N.S. Al-Muaikel, A.A. Atalla, A.-B.A.A.M. ElAdasy and A.R. Abdellah, J. Appl. Polym. Sci., 136, 47770 (2019); https://doi.org/10.1002/app.47770
A.K. Sharma and S. Chandra, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 81, 424 (2011); https://doi.org/10.1016/j.saa.2011.06.032
M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015
G.A. Bohach, D.J. Fast, R.D. Nelson, P.M. Schlievert, J. Rodes, A. Blei, J.P. Benhamou, J. Reichen and M. Rizzetto, The Textbook of Hepatology: From Basic Science to Clinical Practice, Wiley Blackwell: Oxford (UK), pp. 1029 (2007).
N. Demirbas, S.A. Karaoglu, A. Demirbas and K. Sancak, Eur. J. Med. Chem., 39, 793 (2004); https://doi.org/10.1016/j.ejmech.2004.06.007
D. Sriram, P. Yogeeswari, N.S. Myneedu and V. Saraswat, Bioorg. Med. Chem. Lett., 16, 2127 (2006); https://doi.org/10.1016/j.bmcl.2006.01.050
G. Cerchiaro, K. Aquilano, G. Filomeni, G. Rotilio, M.R. Ciriolo and A.M.D.C. Ferreira, J. Inorg. Biochem., 99, 1433 (2005); https://doi.org/10.1016/j.jinorgbio.2005.03.013
S. Chandra, S. Bargujar, R. Nirwal, K. Qanungo and S.K. Sharma, Spectrochim. Acta A, 113, 164 (2013); https://doi.org/10.1016/j.saa.2013.04.114
A. Bhattacharya, T. Singh, V.K. Verma and N. Prasad, Tribol. Int., 28, 189 (1995); https://doi.org/10.1016/0301-679X(95)98966-H
H. Tao, H. Tian, S. Jiang, X. Xiang, Y. Lin, W. Ahmed, R. Tang and Z.- N. Cui, Pestic. Biochem. Physiol., 160, 87 (2019); https://doi.org/10.1016/j.pestbp.2019.07.005
V.A. Ivolgina and M.S. Chernov’yants, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 199, 315 (2018); https://doi.org/10.1016/j.saa.2018.03.069
Z.M. Tabatabaei, P. Foroumadi, M. Toolabi, F. Goli, S. Moghimi, S.K. Ardestani and A. Foroumadi, Bioorg. Med. Chem., 27, 3682 (2019); https://doi.org/10.1016/j.bmc.2019.07.009
J. Zhang, X. Wang, J. Yang, L. Guo, X. Wang, B. Song, W. Dong and W. Wang, Eur. J. Med. Chem., 186, 111897 (2020); https://doi.org/10.1016/j.ejmech.2019.111897
I. Budziak, D. Karcz, M. Makowski, B. Myœliwa-Kurdziel, K. Kasprzak, A. Matwijczuk, E. Chruœciel, A. Oniszczuk, L. Adwent and A. Matwijczuk, J. Mol. Liq., 291, 111261 (2019); https://doi.org/10.1016/j.molliq.2019.111261
M.R. Mahmoud, M.M.A. Hamed and H.M.A. Salman, Spectrochim. Acta, 44, 1185 (1988); https://doi.org/10.1016/0584-8539(88)80090-4
B. Bak, D. Christensen, L. Hansen-Nygaard, L. Lipschitz and J. RastrupAndersen, J. Mol. Spectrosc., 9, 225 (1962); https://doi.org/10.1016/0022-2852(62)90231-X
F. Bentiss, M. Lagrenee, H. Vezin, J.-P. Wignacourt and E.M. Holt, Polyhedron, 23, 1903 (2004); https://doi.org/10.1016/j.poly.2004.04.025
A.K. Singh, O.P. Pandey and S.K. Sengupta, Spectrochim. Acta A Mol. Bolmol. Spectrosc., 113, 393 (2013); https://doi.org/10.1016/j.saa.2013.04.045
H, Muglu, H. Yakan and H.A. Shouaib, J. Mol. Struct., 1203, 127470 (2020); https://doi.org/10.1016/j.molstruc.2019.127470
Y. Deswal, S. Asija, A. Dubey, L. Deswal, D. Kumar, D. Kumar Jindal and J. Devi, J. Mol. Struct., 1253, 132266 (2022); https://doi.org/10.1016/j.molstruc.2021.132266
E. Yabas, E. Bicer and R. Katirci, Opt. Mater., 122, 111808 (2021); https://doi.org/10.1016/j.optmat.2021.111808
G. Maffii, E. Testa and R. Ettorre, Chem. Abstr., 53, 2211a (1959).
M.A. Epishina, A.S. Kulikov, N.V. Ignat’ev, M. Schulte and N.N. Makhova, Mendeleev Commun., 21, 331 (2011); https://doi.org/10.1016/j.mencom.2011.11.013
B. Ashutosh, J. Ankur, N.R. Kumar, G. Sonia, S. Niharika, D. Vivek and S. Pramod, Int. J. Pharm. Sci. Drug Res., 1, 207 (2009).
J. Coats, Eds.: R.A. Meyers, Encyclopedia of Analytical Chemistry, p. 10815 (2000).
U. Holzwarth and N. Gibson, Nanotechnology, 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145
K. Mahiwal, P. Kumar and B. Narasimhan, Med. Chem. Res., 21, 293 (2012); https://doi.org/10.1007/s00044-010-9537-5