Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Externally Silylated RH-MCM-48 from Rice Husk Silica with Superparamagnetic Iron Oxide for Multifunctional Applications
Corresponding Author(s) : S. Suyanta
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
Rice husk silica has been used as a raw material for the sonochemical synthesis of MCM-48 (RH-MCM-48). Silylation on the outer surface of RH-MCM-48 using trimethylchlorosilane before removal of the template to prevent the formation of iron oxide in the outer of RH-MCM-48. The impregnation of Fe3+ into the externally silylated-RH-MCM-48 porous system was done by optimizing the concentration of Fe3+, contact time and temperature. The XRD pattern, N2 adsorption/desorption isotherms and TEM images showed that RH-MCM-48 has an ordered Ia3d cubic mesostructure with high specific surface area and narrow porous size distribution. FTIR spectra confirmed the successful implementation of external silylation. Moreover, DR-UV-vis spectra, EPR spectra and magnetization curve show that the impregnation of Fe3+ into the externally silylated-RH-MCM-48 pores produce a superparamagnetic iron oxide nanoparticles formed inside the pores and induces partial isomorphic substitution of Si4+ by Fe3+ on the wall pores.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Duong, H. Khurshid, P. Gangopadhyay, J. Devkota, K. Stojak, H. Srikanth, L. Tetard, R.A. Norwood, N. Peyghambarian, M.H. Phan and J. Thomas, Nano-Micro Small, 10, 2840 (2014) https://doi.org/10.1002/smll.201303809
- T. Das, I.W. Nah, J.G. Choi and I.-H. Oh, React. Kinet. Mech. Catal., 118, 669 (2016); https://doi.org/10.1007/s11144-016-1035-4
- S.L. Iconaru, R. Guégan, C.L. Popa, M. Motelica-Heino, C.S. Ciobanu and D. Predoi, Appl. Clay Sci., 134, 128 (2016); https://doi.org/10.1016/j.clay.2016.08.019
- S.M. Dadfar, K. Roemhild, N.I. Drude, S. von Stillfried, R. Knüchel, F. Kiessling and T. Lammers, Adv. Drug Deliv. Rev., 138, 302 (2019); https://doi.org/10.1016/j.addr.2019.01.005
- E. Chamorro, M.J. Tenorio, L. Calvo, M.J. Torralvo, R. Sáez-Puche and A. Cabañas, J. Supercrit. Fluids, 159, 104775 (2020); https://doi.org/10.1016/j.supflu.2020.104775
- Wahajuddin and S. Arora, Int. J. Nanomedicine, 3445 (2012); https://doi.org/10.2147/IJN.S30320
- D. Pan, A.H. Schmieder, S.A. Wickline and G.M. Lanza, Tetrahedron, 67, 8431 (2011); https://doi.org/10.1016/j.tet.2011.07.076
- V.C. Pierre, M.J. Allen and P. Caravan, J. Biol. Inorg. Chem., 19, 127 (2014); https://doi.org/10.1007/s00775-013-1074-5
- J. Dulinska-Litewka, A. Lazarczyk, P. Halubiec, O. Szafranski, K. Karnas and A. Karewicz, Materials, 12, 617 (2019); https://doi.org/10.3390/ma12040617
- S. Uthaman, S.J. Lee, K. Cherukula, C.S. Cho and I.K. Park, BioMed Res. Int., 2015, 959175 (2015); https://doi.org/10.1155/2015/959175
- D.H. Nguyen, J.S. Lee, J.H. Choi, K.M. Park, Y. Lee and K.D. Park, Acta Biomater., 35, 109 (2016); https://doi.org/10.1016/j.actbio.2016.02.020
- X. Song, G. Yan, S. Quan, E. Jin, J. Quan and G. Jin, Biosci. Biotechnol. Biochem., 83, 622 (2019); https://doi.org/10.1080/09168451.2018.1562875
- F. Tang, L. Li and D. Chen, Adv. Mater., 24, 1504 (2012); https://doi.org/10.1002/adma.201104763
- X. Chen, X. Cheng, A.H. Soeriyadi, S.M. Sagnella, X. Lu, J.A. Scott, S.B. Lowe, M. Kavallaris and J.J. Gooding, Biomater. Sci., 2, 121 (2014); https://doi.org/10.1039/C3BM60148J
- V. Palos-Barba, A. Moreno-Martell, V. Hernández-Morales, C.L. PezaLedesma, E.M. Rivera-Muñoz, R. Nava and B. Pawelec, Materials, 13, 927 (2020); https://doi.org/10.3390/ma13040927
- V. Rizzi, J. Gubitosa, P. Fini, S. Nuzzo and P. Cosma, Sustain. Mater. Technol., 26, e00231 (2020); https://doi.org/10.1016/j.susmat.2020.e00231
- M. Ebrahimi-Gatkash, H. Younesi, A. Shahbazi and A. Heidari, Appl. Water Sci., 7, 1887 (2017); https://doi.org/10.1007/s13201-015-0364-1
- A. Shahbazi, H. Younesi and A. Badiei, Can. J. Chem. Eng., 91, 739 (2013); https://doi.org/10.1002/cjce.21691
- F. Sahel, F. Sebih, S. Bellahouel, A. Bengueddach and R. Hamacha, Res. Chem. Intermed., 46, 133 (2020); https://doi.org/10.1007/s11164-019-03939-5
- T. Tamoradi, M. Ghadermazi and A. Ghorbani-Choghamarani, J. Saudi Chem. Soc., 23, 846 (2019); https://doi.org/10.1016/j.jscs.2019.02.003
- E. Karakhanov, A. Akopyan, O. Golubev, A. Anisimov, A. Glotov, A. Vutolkina and A. Maximov, ACS Omega, 4, 12736 (2019); https://doi.org/10.1021/acsomega.9b01819
- A. Fernandez-Fernandez, R. Manchanda and A. McGoron, Appl. Biochem. Biotechnol., 165, 1628 (2011); https://doi.org/10.1007/s12010-011-9383-z
- J. M. Rosenholm, C. Sahlgren and M. Linden, Curr. Drug Targets, 12, 1166 (2011); https://doi.org/10.2174/138945011795906624
- A. Baeza, M. Colilla and M. Vallet-Regí, Expert Opin. Drug Deliv., 12, 319 (2015); https://doi.org/10.1517/17425247.2014.953051
- M. Popova, N. Koseva, I. Trendafilova, H. Lazarova, V. Mitova, J. Mihály, D. Momekova, G. Momekov, I.Z. Koleva, H.A. Aleksandrov, G.N. Vayssilov and Á. Szegedi, Molecules, 25, 5129 (2020); https://doi.org/10.3390/molecules25215129
- S.E. Dapurkar and P. Selvam, Mater. Phys. Mech., 4, 13 (2001).
- S. Huang, C. Li, Z. Cheng, Y. Fan, P. Yang, C. Zhang, K. Yang and J. Lin, J. Colloid Interface Sci., 376, 312 (2012); https://doi.org/10.1016/j.jcis.2012.02.031
- X. Zang and W. Xie, J. Oleo Sci., 63, 1027 (2014); https://doi.org/10.5650/jos.ess14089
- L. Li, X. Wang, D. Zhang, R. Guo and X. Du, Appl. Surf. Sci., 328, 26 (2015); https://doi.org/10.1016/j.apsusc.2014.11.116
- J. Liu, S. Fang, R. Jian, F. Wu and P. Jian, Powder Technol., 329, 19 (2018); https://doi.org/10.1016/j.powtec.2018.01.066
- L.C. Guan, Ph.D. Thesis, Mesoporous MCM-48 Synthesized from Rice Husk Ash Silica: Physico-chemical Properties and its Catalytic Activity in Acylation Reaction, Faculty of Science Universiti Teknologi Malaysia (2005).
- H. Wang, W. Qian, J. Chen, Y. Wu, X. Xu, J. Wang and Y. Kong, RSC Adv., 4, 50832 (2014); https://doi.org/10.1039/C4RA08333D
- A. Popat, J. Liu, Q. Hu, M. Kennedy, B. Peters, G.Q. Lu and S.Z. Qiao, Nanoscale, 4, 970 (2012); https://doi.org/10.1039/C2NR11691J
- W. Zhao, M. Qin, L.N. Wang, J.L. Chu, J.K. Qu, S.H. Li, Q.Z. Li and T. Qi, J. Colloid Interface Sci., 384, 81 (2012); https://doi.org/10.1016/j.jcis.2012.05.057
- D. Battegazzore, S. Bocchini, J. Alongi and A. Frache, RSC Adv., 4, 54703 (2014); https://doi.org/10.1039/C4RA05991C
- R.M. Mohamed, I.A. Mkhalid and M.A. Barakat, Arab. J. Chem., 8, 48 (2015); https://doi.org/10.1016/j.arabjc.2012.12.013
- N.K. Renuka, A.K. Praveena and K. Anas, Mater. Lett., 70, 109 (2013); https://doi.org/10.1016/j.matlet.2013.07.074
- M. Bhagiyalakshmi, L.J. Yun, R. Anuradha and H.T. Jang, J. Hazard. Mater., 175, 928 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.097
- U. Gedikli, Z. Misirlioglu, P.A. Bozkurt and M. Canel, J. Turkish Chem. Soc., 2, 54 (2015).
- T.M. Salem Attia, X.L. Hu and D.Q. Yin, J. Exp. Nanosci., 9, 551 (2014); https://doi.org/10.1080/17458080.2012.677549
- S. Huang, Y. Fan, Z. Cheng, D. Kong, P. Yang, Z. Quan, C. Zhang and J. Lin, J. Phys. Chem. C, 113, 1775 (2009); https://doi.org/10.1021/jp808886c
- G. Lente and I. Fábián, Inorg. Chem., 38, 603 (1999); https://doi.org/10.1021/ic980813c
- W. Qian, H. Wang, J. Chen and Y. Kong, Materials, 8, 1752 (2015); https://doi.org/10.3390/ma8041752
- N.Y. He, J.M. Cao, S.L. Bao and Q.H. Xu, Mater. Lett., 31, 133 (1997); https://doi.org/10.1016/S0167-577X(96)00258-3
- L. Pasqua, F. Testa, R. Aiello, F. Di Renzo and F. Fajula, Micropor. Mesopor. Mater., 44-45, 111 (2001); https://doi.org/10.1016/S1387-1811(01)00174-3
- H. Yang, G. Zhang, X. Hong and Y. Zhu, Micropor. Mesopor. Mater., 68, 119 (2004); https://doi.org/10.1016/j.micromeso.2003.12.014
- S.I. Karpov, F. Roessner, V.F. Selemenev, N.A. Belanova and O.O. Krizhanovskaya, Russ. J. Phys. Chem., 87, 1888 (2013); https://doi.org/10.1134/S0036024413110125
- X.S. Zhao, G.Q. Lu and G.J. Millar, Ind. Eng. Chem. Res., 35, 2075 (1996); https://doi.org/10.1021/ie950702a
- W. Lutz, Adv. Mater. Sci. Eng., 2014, 724248 (2014); https://doi.org/10.1155/2014/724248
- M.D. Brankovic, A.R. Zarubica, T.D. Andjelkovic and D.H. Andjelkovic, Adv. Technol., 6, 50 (2017); https://doi.org/10.5937/savteh1701050B
- P.E.G. Casillas, C.A.R. Gonzalez and C.A.M. Pérez, Infrared Spectroscopy of Functionalized Magnetic Nanoparticles; In: Infrared Spectroscopy, Intech Open, London, p. 21 (2012).
- N.I. Taib, S. Endud and M.N. Katun, Int. J. Chem., 3, 2 (2011); https://doi.org/10.5539/ijc.v3n3p2
- R.M. Cornell and U. Schwertmann, The Iron Oxides, John Wiley & Sons, New York, Ed.: 2, p. 146 (2003).
- B.B. Zviagina, V.A. Drits and O.V. Dorzhieva, Minerals, 10, 153 (2020); https://doi.org/10.3390/min10020153
- D.V. Quy, N.M. Hieu, P.T. Tra, N.H. Nam, N.H. Hai, N. Thai Son, P.T. Nghia, N.T.V. Anh, T.T. Hong and N.H. Luong, J. Nanomater., 2013, 603940 (2013); https://doi.org/10.1155/2013/603940
- S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press: New York, p. 49 (1992).
- R. Longloilert, T. Chaisuwan, A. Luengnaruemitchai and S. Wongkasemjit, J. Sol-Gel Sci. Technol., 61, 133 (2012); https://doi.org/10.1007/s10971-011-2602-9
- H. Xin, J. Liu, F. Fan, Z. Feng, G. Jia, Q. Yang and C. Li, Micropor. Mesopor. Mater., 113, 231 (2008); https://doi.org/10.1016/j.micromeso.2007.11.022
- M. Iwamoto, T. Abe and Y. Tachibana, J. Mol. Catal. A, 155, 143 (2000); https://doi.org/10.1016/S1381-1169(99)00330-1
- A.I. Carrillo, E. Serrano, R. Luque and J. García-Martínez, Appl. Catal. A Gen., 453, 383 (2013); https://doi.org/10.1016/j.apcata.2012.12.041
- Y. Li, Z.C. Feng, Y.X. Lian, K.Q. Sun, L. Zhang, G.Q. Jia, Q.H. Yang and C. Li, Micropor. Mesopor. Mater., 84, 41 (2005); https://doi.org/10.1016/j.micromeso.2005.05.021
- A. Tuel, I. Arcon and J.M.M. Millet, J. Chem. Soc., 94, 3501 (1998); https://doi.org/10.1039/A806912C
- A. Bhaumik, S. Samanta and N.K. Mal, Pramana –J. Phys., 65, 5 (2005).
- D.Q. Khieu, D.T. Quang, T.D. Lam, N.H. Phu, J.H. Lee and J.S. Kim, J. Incl. Phenom. Macrocycl. Chem., 65, 73 (2009); https://doi.org/10.1007/s10847-009-9624-8
- W. Thitsartarn, E. Gulari and S. Wongkasemjit, Appl. Organomet. Chem., 22, 97 (2008); https://doi.org/10.1002/aoc.1356
- L. Zhang, G.C. Papaefthymiou and J.Y. Ying, J. Phys. Chem. B, 105, 7414 (2001); https://doi.org/10.1021/jp010174i
References
B. Duong, H. Khurshid, P. Gangopadhyay, J. Devkota, K. Stojak, H. Srikanth, L. Tetard, R.A. Norwood, N. Peyghambarian, M.H. Phan and J. Thomas, Nano-Micro Small, 10, 2840 (2014) https://doi.org/10.1002/smll.201303809
T. Das, I.W. Nah, J.G. Choi and I.-H. Oh, React. Kinet. Mech. Catal., 118, 669 (2016); https://doi.org/10.1007/s11144-016-1035-4
S.L. Iconaru, R. Guégan, C.L. Popa, M. Motelica-Heino, C.S. Ciobanu and D. Predoi, Appl. Clay Sci., 134, 128 (2016); https://doi.org/10.1016/j.clay.2016.08.019
S.M. Dadfar, K. Roemhild, N.I. Drude, S. von Stillfried, R. Knüchel, F. Kiessling and T. Lammers, Adv. Drug Deliv. Rev., 138, 302 (2019); https://doi.org/10.1016/j.addr.2019.01.005
E. Chamorro, M.J. Tenorio, L. Calvo, M.J. Torralvo, R. Sáez-Puche and A. Cabañas, J. Supercrit. Fluids, 159, 104775 (2020); https://doi.org/10.1016/j.supflu.2020.104775
Wahajuddin and S. Arora, Int. J. Nanomedicine, 3445 (2012); https://doi.org/10.2147/IJN.S30320
D. Pan, A.H. Schmieder, S.A. Wickline and G.M. Lanza, Tetrahedron, 67, 8431 (2011); https://doi.org/10.1016/j.tet.2011.07.076
V.C. Pierre, M.J. Allen and P. Caravan, J. Biol. Inorg. Chem., 19, 127 (2014); https://doi.org/10.1007/s00775-013-1074-5
J. Dulinska-Litewka, A. Lazarczyk, P. Halubiec, O. Szafranski, K. Karnas and A. Karewicz, Materials, 12, 617 (2019); https://doi.org/10.3390/ma12040617
S. Uthaman, S.J. Lee, K. Cherukula, C.S. Cho and I.K. Park, BioMed Res. Int., 2015, 959175 (2015); https://doi.org/10.1155/2015/959175
D.H. Nguyen, J.S. Lee, J.H. Choi, K.M. Park, Y. Lee and K.D. Park, Acta Biomater., 35, 109 (2016); https://doi.org/10.1016/j.actbio.2016.02.020
X. Song, G. Yan, S. Quan, E. Jin, J. Quan and G. Jin, Biosci. Biotechnol. Biochem., 83, 622 (2019); https://doi.org/10.1080/09168451.2018.1562875
F. Tang, L. Li and D. Chen, Adv. Mater., 24, 1504 (2012); https://doi.org/10.1002/adma.201104763
X. Chen, X. Cheng, A.H. Soeriyadi, S.M. Sagnella, X. Lu, J.A. Scott, S.B. Lowe, M. Kavallaris and J.J. Gooding, Biomater. Sci., 2, 121 (2014); https://doi.org/10.1039/C3BM60148J
V. Palos-Barba, A. Moreno-Martell, V. Hernández-Morales, C.L. PezaLedesma, E.M. Rivera-Muñoz, R. Nava and B. Pawelec, Materials, 13, 927 (2020); https://doi.org/10.3390/ma13040927
V. Rizzi, J. Gubitosa, P. Fini, S. Nuzzo and P. Cosma, Sustain. Mater. Technol., 26, e00231 (2020); https://doi.org/10.1016/j.susmat.2020.e00231
M. Ebrahimi-Gatkash, H. Younesi, A. Shahbazi and A. Heidari, Appl. Water Sci., 7, 1887 (2017); https://doi.org/10.1007/s13201-015-0364-1
A. Shahbazi, H. Younesi and A. Badiei, Can. J. Chem. Eng., 91, 739 (2013); https://doi.org/10.1002/cjce.21691
F. Sahel, F. Sebih, S. Bellahouel, A. Bengueddach and R. Hamacha, Res. Chem. Intermed., 46, 133 (2020); https://doi.org/10.1007/s11164-019-03939-5
T. Tamoradi, M. Ghadermazi and A. Ghorbani-Choghamarani, J. Saudi Chem. Soc., 23, 846 (2019); https://doi.org/10.1016/j.jscs.2019.02.003
E. Karakhanov, A. Akopyan, O. Golubev, A. Anisimov, A. Glotov, A. Vutolkina and A. Maximov, ACS Omega, 4, 12736 (2019); https://doi.org/10.1021/acsomega.9b01819
A. Fernandez-Fernandez, R. Manchanda and A. McGoron, Appl. Biochem. Biotechnol., 165, 1628 (2011); https://doi.org/10.1007/s12010-011-9383-z
J. M. Rosenholm, C. Sahlgren and M. Linden, Curr. Drug Targets, 12, 1166 (2011); https://doi.org/10.2174/138945011795906624
A. Baeza, M. Colilla and M. Vallet-Regí, Expert Opin. Drug Deliv., 12, 319 (2015); https://doi.org/10.1517/17425247.2014.953051
M. Popova, N. Koseva, I. Trendafilova, H. Lazarova, V. Mitova, J. Mihály, D. Momekova, G. Momekov, I.Z. Koleva, H.A. Aleksandrov, G.N. Vayssilov and Á. Szegedi, Molecules, 25, 5129 (2020); https://doi.org/10.3390/molecules25215129
S.E. Dapurkar and P. Selvam, Mater. Phys. Mech., 4, 13 (2001).
S. Huang, C. Li, Z. Cheng, Y. Fan, P. Yang, C. Zhang, K. Yang and J. Lin, J. Colloid Interface Sci., 376, 312 (2012); https://doi.org/10.1016/j.jcis.2012.02.031
X. Zang and W. Xie, J. Oleo Sci., 63, 1027 (2014); https://doi.org/10.5650/jos.ess14089
L. Li, X. Wang, D. Zhang, R. Guo and X. Du, Appl. Surf. Sci., 328, 26 (2015); https://doi.org/10.1016/j.apsusc.2014.11.116
J. Liu, S. Fang, R. Jian, F. Wu and P. Jian, Powder Technol., 329, 19 (2018); https://doi.org/10.1016/j.powtec.2018.01.066
L.C. Guan, Ph.D. Thesis, Mesoporous MCM-48 Synthesized from Rice Husk Ash Silica: Physico-chemical Properties and its Catalytic Activity in Acylation Reaction, Faculty of Science Universiti Teknologi Malaysia (2005).
H. Wang, W. Qian, J. Chen, Y. Wu, X. Xu, J. Wang and Y. Kong, RSC Adv., 4, 50832 (2014); https://doi.org/10.1039/C4RA08333D
A. Popat, J. Liu, Q. Hu, M. Kennedy, B. Peters, G.Q. Lu and S.Z. Qiao, Nanoscale, 4, 970 (2012); https://doi.org/10.1039/C2NR11691J
W. Zhao, M. Qin, L.N. Wang, J.L. Chu, J.K. Qu, S.H. Li, Q.Z. Li and T. Qi, J. Colloid Interface Sci., 384, 81 (2012); https://doi.org/10.1016/j.jcis.2012.05.057
D. Battegazzore, S. Bocchini, J. Alongi and A. Frache, RSC Adv., 4, 54703 (2014); https://doi.org/10.1039/C4RA05991C
R.M. Mohamed, I.A. Mkhalid and M.A. Barakat, Arab. J. Chem., 8, 48 (2015); https://doi.org/10.1016/j.arabjc.2012.12.013
N.K. Renuka, A.K. Praveena and K. Anas, Mater. Lett., 70, 109 (2013); https://doi.org/10.1016/j.matlet.2013.07.074
M. Bhagiyalakshmi, L.J. Yun, R. Anuradha and H.T. Jang, J. Hazard. Mater., 175, 928 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.097
U. Gedikli, Z. Misirlioglu, P.A. Bozkurt and M. Canel, J. Turkish Chem. Soc., 2, 54 (2015).
T.M. Salem Attia, X.L. Hu and D.Q. Yin, J. Exp. Nanosci., 9, 551 (2014); https://doi.org/10.1080/17458080.2012.677549
S. Huang, Y. Fan, Z. Cheng, D. Kong, P. Yang, Z. Quan, C. Zhang and J. Lin, J. Phys. Chem. C, 113, 1775 (2009); https://doi.org/10.1021/jp808886c
G. Lente and I. Fábián, Inorg. Chem., 38, 603 (1999); https://doi.org/10.1021/ic980813c
W. Qian, H. Wang, J. Chen and Y. Kong, Materials, 8, 1752 (2015); https://doi.org/10.3390/ma8041752
N.Y. He, J.M. Cao, S.L. Bao and Q.H. Xu, Mater. Lett., 31, 133 (1997); https://doi.org/10.1016/S0167-577X(96)00258-3
L. Pasqua, F. Testa, R. Aiello, F. Di Renzo and F. Fajula, Micropor. Mesopor. Mater., 44-45, 111 (2001); https://doi.org/10.1016/S1387-1811(01)00174-3
H. Yang, G. Zhang, X. Hong and Y. Zhu, Micropor. Mesopor. Mater., 68, 119 (2004); https://doi.org/10.1016/j.micromeso.2003.12.014
S.I. Karpov, F. Roessner, V.F. Selemenev, N.A. Belanova and O.O. Krizhanovskaya, Russ. J. Phys. Chem., 87, 1888 (2013); https://doi.org/10.1134/S0036024413110125
X.S. Zhao, G.Q. Lu and G.J. Millar, Ind. Eng. Chem. Res., 35, 2075 (1996); https://doi.org/10.1021/ie950702a
W. Lutz, Adv. Mater. Sci. Eng., 2014, 724248 (2014); https://doi.org/10.1155/2014/724248
M.D. Brankovic, A.R. Zarubica, T.D. Andjelkovic and D.H. Andjelkovic, Adv. Technol., 6, 50 (2017); https://doi.org/10.5937/savteh1701050B
P.E.G. Casillas, C.A.R. Gonzalez and C.A.M. Pérez, Infrared Spectroscopy of Functionalized Magnetic Nanoparticles; In: Infrared Spectroscopy, Intech Open, London, p. 21 (2012).
N.I. Taib, S. Endud and M.N. Katun, Int. J. Chem., 3, 2 (2011); https://doi.org/10.5539/ijc.v3n3p2
R.M. Cornell and U. Schwertmann, The Iron Oxides, John Wiley & Sons, New York, Ed.: 2, p. 146 (2003).
B.B. Zviagina, V.A. Drits and O.V. Dorzhieva, Minerals, 10, 153 (2020); https://doi.org/10.3390/min10020153
D.V. Quy, N.M. Hieu, P.T. Tra, N.H. Nam, N.H. Hai, N. Thai Son, P.T. Nghia, N.T.V. Anh, T.T. Hong and N.H. Luong, J. Nanomater., 2013, 603940 (2013); https://doi.org/10.1155/2013/603940
S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press: New York, p. 49 (1992).
R. Longloilert, T. Chaisuwan, A. Luengnaruemitchai and S. Wongkasemjit, J. Sol-Gel Sci. Technol., 61, 133 (2012); https://doi.org/10.1007/s10971-011-2602-9
H. Xin, J. Liu, F. Fan, Z. Feng, G. Jia, Q. Yang and C. Li, Micropor. Mesopor. Mater., 113, 231 (2008); https://doi.org/10.1016/j.micromeso.2007.11.022
M. Iwamoto, T. Abe and Y. Tachibana, J. Mol. Catal. A, 155, 143 (2000); https://doi.org/10.1016/S1381-1169(99)00330-1
A.I. Carrillo, E. Serrano, R. Luque and J. García-Martínez, Appl. Catal. A Gen., 453, 383 (2013); https://doi.org/10.1016/j.apcata.2012.12.041
Y. Li, Z.C. Feng, Y.X. Lian, K.Q. Sun, L. Zhang, G.Q. Jia, Q.H. Yang and C. Li, Micropor. Mesopor. Mater., 84, 41 (2005); https://doi.org/10.1016/j.micromeso.2005.05.021
A. Tuel, I. Arcon and J.M.M. Millet, J. Chem. Soc., 94, 3501 (1998); https://doi.org/10.1039/A806912C
A. Bhaumik, S. Samanta and N.K. Mal, Pramana –J. Phys., 65, 5 (2005).
D.Q. Khieu, D.T. Quang, T.D. Lam, N.H. Phu, J.H. Lee and J.S. Kim, J. Incl. Phenom. Macrocycl. Chem., 65, 73 (2009); https://doi.org/10.1007/s10847-009-9624-8
W. Thitsartarn, E. Gulari and S. Wongkasemjit, Appl. Organomet. Chem., 22, 97 (2008); https://doi.org/10.1002/aoc.1356
L. Zhang, G.C. Papaefthymiou and J.Y. Ying, J. Phys. Chem. B, 105, 7414 (2001); https://doi.org/10.1021/jp010174i