Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biological Applications of Biosilica/Silk Fibroin/Polyurethane (1:3:1) Composite
Corresponding Author(s) : T. Gomathi
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
High availability and several benefits of biosilica (BS) in various industries, it becomes a desirable material for industrial purposes. This study is focused to prepare a biocomposite of biosilica isolated from sugarcane baggase and combined with silk fibroin (SF) and polyurethane (PUF) foam. FTIR, XRD, TGA, DSC and SEM measurements were used to characterize the synthesized BS/SF/PUF biocomposite. The potentiality of biosilica composite as an antimicrobial support material was investigated. The BS/SF/PUF biocomposite has a rough surface nature, amorphous and higher thermal stability due to strong contacts, according to the characterization data. Furthermore, the results revealed that the produced material exhibited excellent antioxidant and antimicrobial properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Hoshiba, T. Orui, C. Endo, K. Sato, A. Yoshihiro, Y. Minagawa and M. Tanaka, RSC Adv., 6, 89103 (2016); https://doi.org/10.1039/C6RA15229E
- Megawati, D.S. Fardhyanti, R.D. Artanti Putri, O. Fianti, A.F. Simalango and A.E. Akhir, MATEC Web Conf., 237, 2002 (2018); https://doi.org/10.1051/matecconf/201823702002
- S. Norsuraya, R. Norhasyimi and H. Fazlena, Malays. J. Anal. Sci., 21, 512 (2017); https://doi.org/10.17576/mjas-2017-2102-26
- P. Chindaprasirt and U. Rattanasak, Sci. Rep., 10, 9890 (2020); https://doi.org/10.1038/s41598-020-66885-y
- T.P. Nguyen, Q.V. Nguyen, V.-H. Nguyen, T.-H. Le, V.Q.N. Huynh, D.-V.N. Vo, Q.T. Trinh, S.Y. Kim and Q.V. Le, Polymers, 11, 1933 (2019); https://doi.org/10.3390/polym11121933
- A.B. Mathur and V. Gupta, Nanomedicine, 5, 807 (2010); https://doi.org/10.2217/nnm.10.51
- Y. Qi, H. Wang, K. Wei, Y. Yang, R.-Y. Zheng, I.S. Kim and K.-Q. Zhang, Int. J. Mol. Sci., 18, 237 (2017); https://doi.org/10.3390/ijms18030237
- F. Mottaghitalab, M. Farokhi, M.A. Shokrgozar, F. Atyabi and H. Hosseinkhani, J. Control. Rel., 206, 161 (2015); https://doi.org/10.1016/j.jconrel.2015.03.020
- F. Philipp Seib, AIMS Bioeng., 4, 239 (2017); https://doi.org/10.3934/bioeng.2017.2.239
- C. Belbéoch, J. Lejeune, P. Vroman and F. Salaün, Environ. Chem. Lett., 19, 1737 (2021); https://doi.org/10.1007/s10311-020-01147-x
- I. Francolini, F. Crisante, A. Martinelli, L. D’Ilario and A. Piozzi, Acta Biomater., 8, 549 (2012); https://doi.org/10.1016/j.actbio.2011.10.024
- F.M. Carvalho, F.J.M. Mergulhão and L.C. Gomes, Antibiotics, 10, 1525 (2021); https://doi.org/10.3390/antibiotics10121525
- M. Pergal and M. Balaban, Eds.: G. Rohman, Synthesis and StructureProperty Relationships of Biodegradable Polyurethanes, In: Biodegradable Polymers: Recent Developments and New Perspectives, IAPC Publishing, Zagreb, Croatia, Chap. 5, pp. 141-190 (2017).
- Z. Petrovic, I. Javni and M. Ionescu, J. Renew. Mater., 1, 167 (2013); https://doi.org/10.7569/JRM.2013.634112
- M.O. Kareem, A.A. Edathil, K. Rambabu, G. Bharath, F. Banat, G.S. Nirmala and K. Sathiyanarayanan, Chem. Eng. Commun., 208, 801 (2021); https://doi.org/10.1080/00986445.2019.1650034
- R.H. Alves, T.V. da S. Reis, S. Rovani and D.A. Fungaro, J. Chem., 2017, 6129035 (2017); https://doi.org/10.1155/2017/6129035
- H. Yang, R. Yan, H. Chen, D.H. Lee and C. Zheng, Fuel, 86, 1781 (2007); https://doi.org/10.1016/j.fuel.2006.12.013
- E.M. Charry, M. Neumann, J. Lahti, R. Schennach, V. Schmidt and K. Zojer, J. Microsc., 272, 35 (2018); https://doi.org/10.1111/jmi.12730
- E. Capuana, F. Lopresti, F. Carfì Pavia, V. Brucato and V. La Carrubba, Polymers, 13, 2041 (2021); https://doi.org/10.3390/polym13132041
- N. Abbasi, S. Hamlet, R.M. Love and N.-T. Nguyen, J. Sci. Adv. Mater. Devices, 5, 1 (2020); https://doi.org/10.1016/j.jsamd.2020.01.007
- S.M. Elbayomi, H. Wang, T.M. Tamer and Y. You, Polymers, 13, 2575 (2021); https://doi.org/10.3390/polym13152575
- S. Roy and J.-W. Rhim, Int. J. Biol. Macromol., 162, 1780 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.094
References
T. Hoshiba, T. Orui, C. Endo, K. Sato, A. Yoshihiro, Y. Minagawa and M. Tanaka, RSC Adv., 6, 89103 (2016); https://doi.org/10.1039/C6RA15229E
Megawati, D.S. Fardhyanti, R.D. Artanti Putri, O. Fianti, A.F. Simalango and A.E. Akhir, MATEC Web Conf., 237, 2002 (2018); https://doi.org/10.1051/matecconf/201823702002
S. Norsuraya, R. Norhasyimi and H. Fazlena, Malays. J. Anal. Sci., 21, 512 (2017); https://doi.org/10.17576/mjas-2017-2102-26
P. Chindaprasirt and U. Rattanasak, Sci. Rep., 10, 9890 (2020); https://doi.org/10.1038/s41598-020-66885-y
T.P. Nguyen, Q.V. Nguyen, V.-H. Nguyen, T.-H. Le, V.Q.N. Huynh, D.-V.N. Vo, Q.T. Trinh, S.Y. Kim and Q.V. Le, Polymers, 11, 1933 (2019); https://doi.org/10.3390/polym11121933
A.B. Mathur and V. Gupta, Nanomedicine, 5, 807 (2010); https://doi.org/10.2217/nnm.10.51
Y. Qi, H. Wang, K. Wei, Y. Yang, R.-Y. Zheng, I.S. Kim and K.-Q. Zhang, Int. J. Mol. Sci., 18, 237 (2017); https://doi.org/10.3390/ijms18030237
F. Mottaghitalab, M. Farokhi, M.A. Shokrgozar, F. Atyabi and H. Hosseinkhani, J. Control. Rel., 206, 161 (2015); https://doi.org/10.1016/j.jconrel.2015.03.020
F. Philipp Seib, AIMS Bioeng., 4, 239 (2017); https://doi.org/10.3934/bioeng.2017.2.239
C. Belbéoch, J. Lejeune, P. Vroman and F. Salaün, Environ. Chem. Lett., 19, 1737 (2021); https://doi.org/10.1007/s10311-020-01147-x
I. Francolini, F. Crisante, A. Martinelli, L. D’Ilario and A. Piozzi, Acta Biomater., 8, 549 (2012); https://doi.org/10.1016/j.actbio.2011.10.024
F.M. Carvalho, F.J.M. Mergulhão and L.C. Gomes, Antibiotics, 10, 1525 (2021); https://doi.org/10.3390/antibiotics10121525
M. Pergal and M. Balaban, Eds.: G. Rohman, Synthesis and StructureProperty Relationships of Biodegradable Polyurethanes, In: Biodegradable Polymers: Recent Developments and New Perspectives, IAPC Publishing, Zagreb, Croatia, Chap. 5, pp. 141-190 (2017).
Z. Petrovic, I. Javni and M. Ionescu, J. Renew. Mater., 1, 167 (2013); https://doi.org/10.7569/JRM.2013.634112
M.O. Kareem, A.A. Edathil, K. Rambabu, G. Bharath, F. Banat, G.S. Nirmala and K. Sathiyanarayanan, Chem. Eng. Commun., 208, 801 (2021); https://doi.org/10.1080/00986445.2019.1650034
R.H. Alves, T.V. da S. Reis, S. Rovani and D.A. Fungaro, J. Chem., 2017, 6129035 (2017); https://doi.org/10.1155/2017/6129035
H. Yang, R. Yan, H. Chen, D.H. Lee and C. Zheng, Fuel, 86, 1781 (2007); https://doi.org/10.1016/j.fuel.2006.12.013
E.M. Charry, M. Neumann, J. Lahti, R. Schennach, V. Schmidt and K. Zojer, J. Microsc., 272, 35 (2018); https://doi.org/10.1111/jmi.12730
E. Capuana, F. Lopresti, F. Carfì Pavia, V. Brucato and V. La Carrubba, Polymers, 13, 2041 (2021); https://doi.org/10.3390/polym13132041
N. Abbasi, S. Hamlet, R.M. Love and N.-T. Nguyen, J. Sci. Adv. Mater. Devices, 5, 1 (2020); https://doi.org/10.1016/j.jsamd.2020.01.007
S.M. Elbayomi, H. Wang, T.M. Tamer and Y. You, Polymers, 13, 2575 (2021); https://doi.org/10.3390/polym13152575
S. Roy and J.-W. Rhim, Int. J. Biol. Macromol., 162, 1780 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.094