Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
First Principle DFT + U Calculations for the Optoelectronic Properties of Cu and C-Cu co-doped TiO2 Anatase Model
Corresponding Author(s) : M.S.M. Saheed
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
The metal-cations and non-metal anions mono-doped titanium dioxide (TiO2) systems have shown limited success as an efficient photocatalyst for various photocatalytic applications. Instead, the co-doping of TiO2 with metal and non-metal dopants is transpired as an effective doping approach to reduce the wide bandgap of the TiO2 and harvest a greater amount of the visible solar spectrum. Herein, a computational study was systematically performed to develop an efficient carbon-copper (C-Cu) co-doped TiO2 anatase system and compared its optoelectronic characteristics with the copper (Cu) mono-doped TiO2 system. The structural properties simulated with Perdew–Burke–Ernzerhof assisted generalized gradient approximation (GGA + PBE) whereas the electronic and optical properties with Hubbard’s modified (GGA + U) approximation. The electronic band structure and density of states plots display reduced bandgap energy of 2.30 eV for the C-Cu co-doped TiO2 anatase model in comparison to Cu mono-doped TiO2 anatase model. Moreover, the absorption spectra display a redshift of the optical absorption edge up to 515 nm for the co-doped system. Overall, the DFT work provide clear insights and predictions that the C-Cu co-doped TiO2 anatase model has an efficient bandgap narrowing with a significant redshift of the optical absorption edge in comparison to Cu mono-doped TiO2 model.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sharma, S. Agarwal and A. Jain, Energies, 14, 7389 (2021); https://doi.org/10.3390/en14217389
- H. Ge, F. Xu, B. Cheng, J. Yu and W. Ho, ChemCatChem, 11, 6301 (2019); https://doi.org/10.1002/cctc.201901486
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
- M. Rafique, Y. Shuai and M. Hassan, J. Mol. Struct., 1142, 11 (2017); https://doi.org/10.1016/j.molstruc.2017.04.045
- S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Y.F. Zhukovskii, M. Wessel and E. Spohr, J. Phys. Chem. C, 119, 18686 (2015); https://doi.org/10.1021/acs.jpcc.5b03691
- R. Singh and S. Dutta, Fuel, 220, 607 (2018); https://doi.org/10.1016/j.fuel.2018.02.068
- Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui and J. Tian, Chem. Eng. J., 383, 123178 (2020); https://doi.org/10.1016/j.cej.2019.123178,
- F. He, A. Meng, B. Cheng, W. Ho and J. Yu, Chin. J. Catal., 41, 9 (2020); https://doi.org/10.1016/S1872-2067(19)63382-6
- X. Dan, K.L. Yao, G.Y. Gao and L. Yang, J. Magn., 335, 118 (2013); https://doi.org/10.1016/j.jmmm.2013.02.010
- T. Yun, F. Qing, D. Shoubing, L. Tong, G. Jiemei and W. Fang, Acta Opt. Sin., 33, 0816004 (2013); https://doi.org/10.3788/AOS201333.0816004
- X. Yu, C. Li, H. Tang, Y. Ling, T.-A. Tang, Q. Wu and J. Kong, Comput. Mater. Sci., 49, 430 (2010); https://doi.org/10.1016/j.commatsci.2010.05.034
- N.M. Mohamed, F. Ullah, R. Bashiri, C.F. Kait, M.S.M. Saheed and M.U. Shahid, In: Proceedings of the 6th International Conference on Fundamental and Applied Sciences, Springer, pp. 371-381 (2021).
- F. Ullah, N.M. Mohamed, C.F. Kait, U. Ghani and M.S.M. Saheed, Surf. Interfaces, 30, 101952 (2022); https://doi.org/10.1016/j.surfin.2022.101952
- N. Tancogne-Dejean, M.A. Sentef and A. Rubio, Phys. Rev. Lett., 121, 097402 (2018); https://doi.org/10.1103/PhysRevLett.121.097402
- M. Mesbahi and M.L. Benkhedir, UPB Sci. Bull., Series A, 79, 293 (2017).
- J. He, Q. Liu, Z. Sun, W. Yan, G. Zhang, Z. Qi, P. Xu, Z. Wu and S. Wei, J. Phys. Chem. C, 114, 6035 (2010); https://doi.org/10.1021/jp911267m
- J. Ananpattarachai, Y. Boonto and P. Kajitvichyanukul, Environ. Sci. Pollut. Res. Int., 23, 4111 (2016); https://doi.org/10.1007/s11356-015-4775-1
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson and M.C. Payne, Z. Kristallogr. Cryst. Mater., 220, 567 (2005); https://doi.org/10.1524/zkri.220.5.567.65075
- J.G. Lee, Computational Materials Science: An Introduction, CRC Press (2016).
- A. Chanda, S.R. Joshi, V.R. Akshay, S. Varma, J. Singh, M. Vasundhara and P. Shukla, Appl. Surf. Sci., 536, 147830 (2021); https://doi.org/10.1016/j.apsusc.2020.147830
- F. Nunzi, F. De Angelis and A. Selloni, J. Phys. Chem. Lett., 7, 3597 (2016); https://doi.org/10.1021/acs.jpclett.6b01517
- S.S. Nishat, M.J. Hossain, F.E. Mullick, A. Kabir, S. Chowdhury, S. Islam and M. Hossain, J. Phys. Chem. C, 125, 13158 (2021); https://doi.org/10.1021/acs.jpcc.1c02302
- Y.-H. Lin, H.-T. Hsueh, C.-W. Chang and H. Chu, Appl. Catal. B, 199, 1 (2016); https://doi.org/10.1016/j.apcatb.2016.06.024
- B. Liu and X. Zhao, Appl. Surf. Sci., 399, 654 (2017); https://doi.org/10.1016/j.apsusc.2016.12.075
References
S. Sharma, S. Agarwal and A. Jain, Energies, 14, 7389 (2021); https://doi.org/10.3390/en14217389
H. Ge, F. Xu, B. Cheng, J. Yu and W. Ho, ChemCatChem, 11, 6301 (2019); https://doi.org/10.1002/cctc.201901486
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0
M. Rafique, Y. Shuai and M. Hassan, J. Mol. Struct., 1142, 11 (2017); https://doi.org/10.1016/j.molstruc.2017.04.045
S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Y.F. Zhukovskii, M. Wessel and E. Spohr, J. Phys. Chem. C, 119, 18686 (2015); https://doi.org/10.1021/acs.jpcc.5b03691
R. Singh and S. Dutta, Fuel, 220, 607 (2018); https://doi.org/10.1016/j.fuel.2018.02.068
Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui and J. Tian, Chem. Eng. J., 383, 123178 (2020); https://doi.org/10.1016/j.cej.2019.123178,
F. He, A. Meng, B. Cheng, W. Ho and J. Yu, Chin. J. Catal., 41, 9 (2020); https://doi.org/10.1016/S1872-2067(19)63382-6
X. Dan, K.L. Yao, G.Y. Gao and L. Yang, J. Magn., 335, 118 (2013); https://doi.org/10.1016/j.jmmm.2013.02.010
T. Yun, F. Qing, D. Shoubing, L. Tong, G. Jiemei and W. Fang, Acta Opt. Sin., 33, 0816004 (2013); https://doi.org/10.3788/AOS201333.0816004
X. Yu, C. Li, H. Tang, Y. Ling, T.-A. Tang, Q. Wu and J. Kong, Comput. Mater. Sci., 49, 430 (2010); https://doi.org/10.1016/j.commatsci.2010.05.034
N.M. Mohamed, F. Ullah, R. Bashiri, C.F. Kait, M.S.M. Saheed and M.U. Shahid, In: Proceedings of the 6th International Conference on Fundamental and Applied Sciences, Springer, pp. 371-381 (2021).
F. Ullah, N.M. Mohamed, C.F. Kait, U. Ghani and M.S.M. Saheed, Surf. Interfaces, 30, 101952 (2022); https://doi.org/10.1016/j.surfin.2022.101952
N. Tancogne-Dejean, M.A. Sentef and A. Rubio, Phys. Rev. Lett., 121, 097402 (2018); https://doi.org/10.1103/PhysRevLett.121.097402
M. Mesbahi and M.L. Benkhedir, UPB Sci. Bull., Series A, 79, 293 (2017).
J. He, Q. Liu, Z. Sun, W. Yan, G. Zhang, Z. Qi, P. Xu, Z. Wu and S. Wei, J. Phys. Chem. C, 114, 6035 (2010); https://doi.org/10.1021/jp911267m
J. Ananpattarachai, Y. Boonto and P. Kajitvichyanukul, Environ. Sci. Pollut. Res. Int., 23, 4111 (2016); https://doi.org/10.1007/s11356-015-4775-1
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson and M.C. Payne, Z. Kristallogr. Cryst. Mater., 220, 567 (2005); https://doi.org/10.1524/zkri.220.5.567.65075
J.G. Lee, Computational Materials Science: An Introduction, CRC Press (2016).
A. Chanda, S.R. Joshi, V.R. Akshay, S. Varma, J. Singh, M. Vasundhara and P. Shukla, Appl. Surf. Sci., 536, 147830 (2021); https://doi.org/10.1016/j.apsusc.2020.147830
F. Nunzi, F. De Angelis and A. Selloni, J. Phys. Chem. Lett., 7, 3597 (2016); https://doi.org/10.1021/acs.jpclett.6b01517
S.S. Nishat, M.J. Hossain, F.E. Mullick, A. Kabir, S. Chowdhury, S. Islam and M. Hossain, J. Phys. Chem. C, 125, 13158 (2021); https://doi.org/10.1021/acs.jpcc.1c02302
Y.-H. Lin, H.-T. Hsueh, C.-W. Chang and H. Chu, Appl. Catal. B, 199, 1 (2016); https://doi.org/10.1016/j.apcatb.2016.06.024
B. Liu and X. Zhao, Appl. Surf. Sci., 399, 654 (2017); https://doi.org/10.1016/j.apsusc.2016.12.075