Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antibacterial Activity of Undoped and Cu2+ Doped Tin Oxide Nanoparticles Synthesized by Microwave Irradiated Solvothermal Method
Corresponding Author(s) : K.J. Abhirama
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
In present work, a simple and facile microwave irradiated solvothermal method was applied for the synthesis of undoped and Cu2+ doped tin oxide nanoparticles. Thermal characterization was performed to study the thermal stability and to fix the annealing temperature. All the prepared samples were annealed at 500 ºC and then characterized. Structural, morphological and optical characterizations were done using PXRD, TEM, SEM and UV-Vis NIR analysis. The PXRD measurement shows the tetragonal phase of tin oxide. Agglomerated and spherical morphology was observed in SEM and TEM micrographs. Presence of blue shift was observed in the absorption spectra of the prepared samples. Elemental compositions of the samples were analyzed using EDX patterns. Magnetic characterization was performed using vibrating sample magnetometer and the analysis revealed that the prepared samples were diamagnetic in nature. Antibacterial studies showed the efficient activity against the Gram-positive and Gram-negative bacterial stains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
- R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
- H. Li, L. Li and Y. Li, Nanotechnol. Rev., 2, 515 (2021); https://doi.org/10.1515/ntrev-2012-0069
- D.O. Scanlon and G.W. Watson, J. Mater. Chem., 22, 25236 (2012); https://doi.org/10.1039/C2JM34352E
- M. Ghaedi, M. Rahimi, A.M. Ghaedi, I. Tyagi, S. Agarwal and V.K. Gupta, J. Colloid Interface Sci., 461, 425 (2016); https://doi.org/10.1016/j.jcis.2015.09.024
- W. Chen, F. Sun, Z. Zhu, Z. Min and W. Li, Micropor. Mesopor. Mater., 186, 65 (2014); https://doi.org/10.1016/j.micromeso.2013.11.030
- F. Shao, F. Hernandez-Ramirez, J.D. Prades, J.R. Morante and N. Lopez, Procedia Eng., 47, 293 (2012); https://doi.org/10.1016/j.proeng.2012.09.141
- D. Singh, V.S. Kundu and A.S. Maan, J. Mol. Struct., 1100, 562 (2015); https://doi.org/10.1016/j.molstruc.2015.08.009
- B. Lee, S.C. Han, M. Oh, M.S. Lah, K.-S. Sohn and M. Pyo, Electrochim. Acta, 113, 149 (2013); https://doi.org/10.1016/j.electacta.2013.09.093
- F. Prado, H.F. Andersen, M. Taeño, J.P. Mæhlen, J. Ramírez-Castellanos, D. Maestre, S. Karazhanov and A. Cremades, Sci. Rep., 10, 5503 (2020); https://doi.org/10.1038/s41598-020-62505-x
- M.A. Batal and F.H. Jneed, Energy Procedia, 6, 1 (2011); https://doi.org/10.1016/j.egypro.2011.05.001
- X. Qiao, H. Yang, C. Chen, X. Lou, J. Sun, L. Chen, X. Fan, L. Zhang and Q. Shen, Procedia Eng., 94, 58 (2014); https://doi.org/10.1016/j.proeng.2013.11.044
- R. Udayakumar, V. Khanaaand and T. Saravanan, Indian J. Sci. Technol., 6, 4754 (2013).
- 14 M.A.M. Akhir, K. Mohamed, H.L. Lee and S.A. Rezan, Procedia Chem., 19, 993 (2016); https://doi.org/10.1016/j.proche.2016.03.148
- A.J. Haider, S.S. Shaker and A.H. Mohammed, Energy Procedia, 36, 776 (2013); https://doi.org/10.1016/j.egypro.2013.07.090
- H. Taib and C.C. Sorrell, J. Aust. Ceram. Soc., 43, 56 (2007).
- S. Sagadevan, J. Nanomater. Mol. Nanotechnol., 4, 4 (2015); https://doi.org/10.4172/2324-8777.1000157
- T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal and R. Jayaprakash, Mater. Lett., 62, 3437 (2008); https://doi.org/10.1016/j.matlet.2008.02.062
- L. Zhang, J. Wu, F. Chen, X. Li, J.M. Schoenung and Q. Shen, J. Asian Ceramic Soc., 1, 114 (2013); https://doi.org/10.1016/j.jascer.2013.03.010
- N.S. Sabri, M.S.M. Deni, A. Zakaria and M.K. Talari, Phys. Procedia, 25, 233 (2012); https://doi.org/10.1016/j.phpro.2012.03.077
- J. You, Y. Zhang and Z. Hu, Colloids Surf. B Biointerfaces, 85, 161 (2011); https://doi.org/10.1016/j.colsurfb.2011.02.023
- A.S.H. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi and G. Ravi, Sci. Rep., 6, 24312 (2016); https://doi.org/10.1038/srep24312
- S. Haq, W. Rehman, M. Waseem, A. Shah, A.R. Khan, M.U. Rehman, P. Ahmad, B. Khan and G. Ali, Mater. Res. Express, 7, 025012 (2020); https://doi.org/10.1088/2053-1591/ab6fa1
- J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha and S.J. Das, J. Taibah Univ. Sci., 10, 601 (2016); https://doi.org/10.1016/j.jtusci.2015.12.003
- S.M. Amininezhad, A. Rezvani, M. Amouheidari, S.M. Amininejad and S. Rakhshani, Zahedan J. Res. Med. Sci., 17, e1053 (2015); https://doi.org/10.17795/zjrms-1053
- G.R. Navale, M. Thripuranthaka, D.J. Late and S.S. Shinde, JSM Nanotechnol. Nanomed., 3, 1033 (2015).
- A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347
- N. Yongvanich, P. Visuttipitukkul, W. Assawasilapakul, W. Srichan and S. Onlamoon, Energy Procedia, 9, 498 (2011); https://doi.org/10.1016/j.egypro.2011.09.057
- F. Yang, X. Zhang, F. Tian, X. Wu and F. Gan, Chin. J. Aeronaut., 20, 181 (2007); https://doi.org/10.1016/S1000-9361(07)60030-2
- A. Ramazani, S. Hamidi and A. Morsali, J. Mol. Liq., 157, 73 (2010); https://doi.org/10.1016/j.molliq.2010.08.012
- P.K. Baitha, P.P. Pal and J. Manam, Nucl. Instrum. Methods Phys. Res. A, 745, 91 (2014); https://doi.org/10.1016/j.nima.2014.01.041
- K.-M. Lee, D.-J. Lee and H. Ahn, Mater. Lett., 58, 3122 (2004); https://doi.org/10.1016/j.matlet.2004.06.002
- S. Tazikeh, A. Akbari, A. Talebi and E. Talebi, Mater. Sci. Pol., 32, 98 (2014); https://doi.org/10.2478/s13536-013-0164-y
- S.M. Priya, A. Geetha and K. Ramamurthi, J. Sol-Gel Sci. Technol., 78, 365 (2016); https://doi.org/10.1007/s10971-016-3966-7
- J. Gajendiran and V. Rajendran, Optoelectron. Adv. Mater. Rapid Commun., 5, 44 (2011).
- S. Kumar, R. Nigam, V. Kundu and N. Jaggi, J. Mater. Sci. Mater. Electron., 26, 3268 (2015); https://doi.org/10.1007/s10854-015-2826-5
- J.C.V. Manikandan, M. Singh, B.C. Yadav, R.S. Mane and S. Vigneselvan, Mater. Chem. Phys., 240, 122265 (2020); https://doi.org/10.1016/j.matchemphys.2019.122265
- T.J. Jacobsson, Ph.D. Thesis in Materials Chemistry, Synthesis and Characterization of ZnO Nanoparticles, Uppsala Universitet, Sweden (2009).
- S. Kar and S. Kundoo, Int. J. Sci. Res., 4, 530 (2015).
- S. Rajeswari, J. Uma Maheswari, D. Muthuraj, E. Kumar and V. Veeraputhiran, J. Nanosci. Tech., 5, 637 (2019); https://doi.org/10.30799/jnst.214.19050115
- M. Alam, A.A. Ansari, M.R. Shaik and N.M. Alandis, Arab. J. Chem., 6, 341 (2013); https://doi.org/10.1016/j.arabjc.2012.04.021
- K.U. Madhu, Ph.D. Thesis, Studies of ZnO-CdS Nanocomposites, Manonmaniam Sundaranar University, Abishekapatti, India (2010).
- K. Sakthiraj, B. Karthikeyan and K. Balachandrakumar, Int. J. Chemtech Res., 7, 1481 (2015).
- S.H. Babu, N.M. Rao, S. Kaleemulla, G. Amarendra and C. Krishnamoorthi, Bull. Mater. Sci., 40, 17 (2017); https://doi.org/10.1007/s12034-016-1352-2
- D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu and M. Deepa, J. Sol-Gel Sci. Technol., 76, 582 (2015); https://doi.org/10.1007/s10971-015-3808-z
- K.R. Raghupathi, R.T. Koodali and A.C. Manna, Langmuir, 27, 4020 (2011); https://doi.org/10.1021/la104825u
- Y. Xie, Y. He, P.L. Irwin, T. Jin and X. Shi, Appl. Environ. Microbiol., 77, 2325 (2011); https://doi.org/10.1128/AEM.02149-10
- M. Mirhosseini and F.B. Firouzabadi, Int. J. Dairy Technol., 66, 291 (2013); https://doi.org/10.1111/1471-0307.12015
- S. Azizi, M.B. Ahmad, F. Namvar and R. Mohamad, Mater. Lett., 116, 275 (2014); https://doi.org/10.1016/j.matlet.2013.11.038
References
J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
H. Li, L. Li and Y. Li, Nanotechnol. Rev., 2, 515 (2021); https://doi.org/10.1515/ntrev-2012-0069
D.O. Scanlon and G.W. Watson, J. Mater. Chem., 22, 25236 (2012); https://doi.org/10.1039/C2JM34352E
M. Ghaedi, M. Rahimi, A.M. Ghaedi, I. Tyagi, S. Agarwal and V.K. Gupta, J. Colloid Interface Sci., 461, 425 (2016); https://doi.org/10.1016/j.jcis.2015.09.024
W. Chen, F. Sun, Z. Zhu, Z. Min and W. Li, Micropor. Mesopor. Mater., 186, 65 (2014); https://doi.org/10.1016/j.micromeso.2013.11.030
F. Shao, F. Hernandez-Ramirez, J.D. Prades, J.R. Morante and N. Lopez, Procedia Eng., 47, 293 (2012); https://doi.org/10.1016/j.proeng.2012.09.141
D. Singh, V.S. Kundu and A.S. Maan, J. Mol. Struct., 1100, 562 (2015); https://doi.org/10.1016/j.molstruc.2015.08.009
B. Lee, S.C. Han, M. Oh, M.S. Lah, K.-S. Sohn and M. Pyo, Electrochim. Acta, 113, 149 (2013); https://doi.org/10.1016/j.electacta.2013.09.093
F. Prado, H.F. Andersen, M. Taeño, J.P. Mæhlen, J. Ramírez-Castellanos, D. Maestre, S. Karazhanov and A. Cremades, Sci. Rep., 10, 5503 (2020); https://doi.org/10.1038/s41598-020-62505-x
M.A. Batal and F.H. Jneed, Energy Procedia, 6, 1 (2011); https://doi.org/10.1016/j.egypro.2011.05.001
X. Qiao, H. Yang, C. Chen, X. Lou, J. Sun, L. Chen, X. Fan, L. Zhang and Q. Shen, Procedia Eng., 94, 58 (2014); https://doi.org/10.1016/j.proeng.2013.11.044
R. Udayakumar, V. Khanaaand and T. Saravanan, Indian J. Sci. Technol., 6, 4754 (2013).
14 M.A.M. Akhir, K. Mohamed, H.L. Lee and S.A. Rezan, Procedia Chem., 19, 993 (2016); https://doi.org/10.1016/j.proche.2016.03.148
A.J. Haider, S.S. Shaker and A.H. Mohammed, Energy Procedia, 36, 776 (2013); https://doi.org/10.1016/j.egypro.2013.07.090
H. Taib and C.C. Sorrell, J. Aust. Ceram. Soc., 43, 56 (2007).
S. Sagadevan, J. Nanomater. Mol. Nanotechnol., 4, 4 (2015); https://doi.org/10.4172/2324-8777.1000157
T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal and R. Jayaprakash, Mater. Lett., 62, 3437 (2008); https://doi.org/10.1016/j.matlet.2008.02.062
L. Zhang, J. Wu, F. Chen, X. Li, J.M. Schoenung and Q. Shen, J. Asian Ceramic Soc., 1, 114 (2013); https://doi.org/10.1016/j.jascer.2013.03.010
N.S. Sabri, M.S.M. Deni, A. Zakaria and M.K. Talari, Phys. Procedia, 25, 233 (2012); https://doi.org/10.1016/j.phpro.2012.03.077
J. You, Y. Zhang and Z. Hu, Colloids Surf. B Biointerfaces, 85, 161 (2011); https://doi.org/10.1016/j.colsurfb.2011.02.023
A.S.H. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi and G. Ravi, Sci. Rep., 6, 24312 (2016); https://doi.org/10.1038/srep24312
S. Haq, W. Rehman, M. Waseem, A. Shah, A.R. Khan, M.U. Rehman, P. Ahmad, B. Khan and G. Ali, Mater. Res. Express, 7, 025012 (2020); https://doi.org/10.1088/2053-1591/ab6fa1
J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha and S.J. Das, J. Taibah Univ. Sci., 10, 601 (2016); https://doi.org/10.1016/j.jtusci.2015.12.003
S.M. Amininezhad, A. Rezvani, M. Amouheidari, S.M. Amininejad and S. Rakhshani, Zahedan J. Res. Med. Sci., 17, e1053 (2015); https://doi.org/10.17795/zjrms-1053
G.R. Navale, M. Thripuranthaka, D.J. Late and S.S. Shinde, JSM Nanotechnol. Nanomed., 3, 1033 (2015).
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347
N. Yongvanich, P. Visuttipitukkul, W. Assawasilapakul, W. Srichan and S. Onlamoon, Energy Procedia, 9, 498 (2011); https://doi.org/10.1016/j.egypro.2011.09.057
F. Yang, X. Zhang, F. Tian, X. Wu and F. Gan, Chin. J. Aeronaut., 20, 181 (2007); https://doi.org/10.1016/S1000-9361(07)60030-2
A. Ramazani, S. Hamidi and A. Morsali, J. Mol. Liq., 157, 73 (2010); https://doi.org/10.1016/j.molliq.2010.08.012
P.K. Baitha, P.P. Pal and J. Manam, Nucl. Instrum. Methods Phys. Res. A, 745, 91 (2014); https://doi.org/10.1016/j.nima.2014.01.041
K.-M. Lee, D.-J. Lee and H. Ahn, Mater. Lett., 58, 3122 (2004); https://doi.org/10.1016/j.matlet.2004.06.002
S. Tazikeh, A. Akbari, A. Talebi and E. Talebi, Mater. Sci. Pol., 32, 98 (2014); https://doi.org/10.2478/s13536-013-0164-y
S.M. Priya, A. Geetha and K. Ramamurthi, J. Sol-Gel Sci. Technol., 78, 365 (2016); https://doi.org/10.1007/s10971-016-3966-7
J. Gajendiran and V. Rajendran, Optoelectron. Adv. Mater. Rapid Commun., 5, 44 (2011).
S. Kumar, R. Nigam, V. Kundu and N. Jaggi, J. Mater. Sci. Mater. Electron., 26, 3268 (2015); https://doi.org/10.1007/s10854-015-2826-5
J.C.V. Manikandan, M. Singh, B.C. Yadav, R.S. Mane and S. Vigneselvan, Mater. Chem. Phys., 240, 122265 (2020); https://doi.org/10.1016/j.matchemphys.2019.122265
T.J. Jacobsson, Ph.D. Thesis in Materials Chemistry, Synthesis and Characterization of ZnO Nanoparticles, Uppsala Universitet, Sweden (2009).
S. Kar and S. Kundoo, Int. J. Sci. Res., 4, 530 (2015).
S. Rajeswari, J. Uma Maheswari, D. Muthuraj, E. Kumar and V. Veeraputhiran, J. Nanosci. Tech., 5, 637 (2019); https://doi.org/10.30799/jnst.214.19050115
M. Alam, A.A. Ansari, M.R. Shaik and N.M. Alandis, Arab. J. Chem., 6, 341 (2013); https://doi.org/10.1016/j.arabjc.2012.04.021
K.U. Madhu, Ph.D. Thesis, Studies of ZnO-CdS Nanocomposites, Manonmaniam Sundaranar University, Abishekapatti, India (2010).
K. Sakthiraj, B. Karthikeyan and K. Balachandrakumar, Int. J. Chemtech Res., 7, 1481 (2015).
S.H. Babu, N.M. Rao, S. Kaleemulla, G. Amarendra and C. Krishnamoorthi, Bull. Mater. Sci., 40, 17 (2017); https://doi.org/10.1007/s12034-016-1352-2
D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu and M. Deepa, J. Sol-Gel Sci. Technol., 76, 582 (2015); https://doi.org/10.1007/s10971-015-3808-z
K.R. Raghupathi, R.T. Koodali and A.C. Manna, Langmuir, 27, 4020 (2011); https://doi.org/10.1021/la104825u
Y. Xie, Y. He, P.L. Irwin, T. Jin and X. Shi, Appl. Environ. Microbiol., 77, 2325 (2011); https://doi.org/10.1128/AEM.02149-10
M. Mirhosseini and F.B. Firouzabadi, Int. J. Dairy Technol., 66, 291 (2013); https://doi.org/10.1111/1471-0307.12015
S. Azizi, M.B. Ahmad, F. Namvar and R. Mohamad, Mater. Lett., 116, 275 (2014); https://doi.org/10.1016/j.matlet.2013.11.038