Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Applicability of NBO and AIM Topology Analyses to Chemical Bonding in Some Diacetylplatinum(II) Complexes
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
The geometrical structures of six square-planar diacetylplatinum(II) complexes ([Pt(Ac)2L], L = hydrazine-type ligand) were calculated using six (B3LYP, CAM-B3LYP, B3PW91, M06, M06HF and PBE) DFT methods and one post-Hartree–Fock (MP2) method combined with 6-31G(d,p) basis sets for nonmetal atoms and LANL2DZ for Pt. Using percent relative errors, M06HF and MP2 are best for predicting Pt–N bond distances, but worst for Pt–C bond distances, whereas B3PW91 is best. Pt–N(pyridine) bonds have higher electron density at the bond critical points than Pt–N(hydrazone) bonds, and the former are more covalent than the latter. Further, Pt–C bonds trans to hydrazone moieties are more covalent than Pt–C bonds trans to Pt–N(pyridine) bonds. Pt–C bonds are mainly due to Pt→Ac back donation rather than Ac→Pt donation; σ-bonding is less important in this case, consistent with the high π-acidity and strong trans effect of acetyl groups. In contrast, Pt→N back donation is negligible and Pt–N bonds are mainly due to N→Pt σ-donation, which stabilizes trans Pt–C bonds
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Rosenberg, L. Vancamp, J.E. Trosko and V.H. Mansour, Nature, 222, 385 (1969); https://doi.org/10.1038/222385a0.
- P.J. O’Dwyer, J.P. Stevenson and S.W. Johnson, ed.: B. Lippert, In: Cisplatin, Chemistry and Biochemistry of a Leading Anticancer Drug, WileyVCH: Weinheim, Germany (1999).
- M. Watson, A. Barret, R. Spence and C. Twelves, Oncology, Oxford University Press: Oxford, edn 2 (2006).
- C.A. Rabik and M.E. Dolan, Cancer Treat. Rev., 33, 9 (2007); https://doi.org/10.1016/j.ctrv.2006.09.006.
- M. Galanski, M. Jakupec and B. Keppler, Curr. Med. Chem., 12, 2075 (2005); https://doi.org/10.2174/0929867054637626.
- D. Wang and S.J. Lippard, Nat. Rev. Drug Discov., 4, 307 (2005); https://doi.org/10.1038/nrd1691.
- N.J. Wheate, S. Walker, G.E. Craig and R. Oun, Dalton Trans., 39, 8113 (2010); https://doi.org/10.1039/c0dt00292e.
- S. Dhar and S.J. Lippard, ed.: E. Alessp, Bioinorganic Medicinal Chemistry, Wiley-VCH: Weinheim, Germany, pp. 79–95 (2011).
- X. Wang and Z. Guo, ed.: E. Alessp, Bioinorganic Medicinal Chemistry, Wiley-VCH: Weinheim, Germany, pp. 97–149 (2011).
- P. Štarha, Z. Trávníèek, A. Popa, I. Popa, T. Muchová and V. Brabec, J. Inorg. Biochem., 115, 57 (2012); https://doi.org/10.1016/j.jinorgbio.2012.05.006.
- N. Ferri, S. Cazzaniga, L. Mazzarella, G. Curigliano, G. Lucchini, D. Zerla, R. Gandolfi, G. Facchetti, M. Pellizzoni and I. Rimoldi, Bioorg. Med. Chem., 21, 2379 (2013); https://doi.org/10.1016/j.bmc.2013.01.063.
- C. Icsel, V.T. Yilmaz, F. Ari, E. Ulukaya and W.T.A. Harrison, Eur. J. Med. Chem., 60, 386 (2013); https://doi.org/10.1016/j.ejmech.2012.12.002
- R.C. Johnstone, G.Y. Park and S.J. Lippard, Anticancer Res., 34, 471 (2014).
- P.L.A. Popelier and G.J. Logothetis, J. Organomet. Chem., 555, 101 (1998); https://doi.org/10.1016/S0022-328X(97)00710-9.
- R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press Oxford (1990).
- R.F.W. Bader and H. Essen, J. Chem. Phys., 80, 1943 (1984); https://doi.org/10.1063/1.446956.
- T. Kluge, E. Bette, M. Bette, J. Schmidt and D. Steinborn, J. Organomet. Chem., 762, 48 (2014); https://doi.org/10.1016/j.jorganchem.2014.03.030.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. 936 Soliman et al. Asian J. Chem. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc., Wallingford CT (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- T. Yanai, D. Tew and N. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011.
- X. Xu and W.A. Goddard III, Proc. Natl. Acad. Sci. USA, 101, 2673 (2004); https://doi.org/10.1073/pnas.0308730100.
- Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x.
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997); https://doi.org/10.1103/PhysRevLett.78.1396.
- J.P. Blaudeau, M.P. McGrath, L.A. Curtiss and L. Radom, J. Chem. Phys., 107, 5016 (1997); https://doi.org/10.1063/1.474865.
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799.
- A. Üngördü and N. Tezer, J. Saudi Chem. Soc., 21, 837 (2017); https://doi.org/10.1016/j.jscs.2017.04.003.
- C. Møller and M.S. Plesset, Phys. Rev., 46, 618 (1934); https://doi.org/10.1103/PhysRev.46.618.
- T. Lu and R. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885.
- F. Weinhold and J.E. Carpenter, The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals and Radical Ions, Plenum, pp. 227 (1988).
- D. Cremer and D. Kraka, Angew. Chem. Int., 23, 627 (1984); https://doi.org/10.1002/anie.198406271.
- E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys., 117, 5529 (2002); https://doi.org/10.1063/1.1501133.
- D. Cremer and E. Kraka, Croat. Chem. Acta, 57, 1259 (1984).
- E. Espinosa, E. Molins and C. Lecomte, Chem. Phys. Lett., 285, 170 (1998); https://doi.org/10.1016/S0009-2614(98)00036-0.
- C.S. López, O.N. Faza, F.P. Cossío, D.M. York and A.R. de Lera, Chem. Eur. J., 11, 1734 (2005); https://doi.org/10.1002/chem.200401026.
References
B. Rosenberg, L. Vancamp, J.E. Trosko and V.H. Mansour, Nature, 222, 385 (1969); https://doi.org/10.1038/222385a0.
P.J. O’Dwyer, J.P. Stevenson and S.W. Johnson, ed.: B. Lippert, In: Cisplatin, Chemistry and Biochemistry of a Leading Anticancer Drug, WileyVCH: Weinheim, Germany (1999).
M. Watson, A. Barret, R. Spence and C. Twelves, Oncology, Oxford University Press: Oxford, edn 2 (2006).
C.A. Rabik and M.E. Dolan, Cancer Treat. Rev., 33, 9 (2007); https://doi.org/10.1016/j.ctrv.2006.09.006.
M. Galanski, M. Jakupec and B. Keppler, Curr. Med. Chem., 12, 2075 (2005); https://doi.org/10.2174/0929867054637626.
D. Wang and S.J. Lippard, Nat. Rev. Drug Discov., 4, 307 (2005); https://doi.org/10.1038/nrd1691.
N.J. Wheate, S. Walker, G.E. Craig and R. Oun, Dalton Trans., 39, 8113 (2010); https://doi.org/10.1039/c0dt00292e.
S. Dhar and S.J. Lippard, ed.: E. Alessp, Bioinorganic Medicinal Chemistry, Wiley-VCH: Weinheim, Germany, pp. 79–95 (2011).
X. Wang and Z. Guo, ed.: E. Alessp, Bioinorganic Medicinal Chemistry, Wiley-VCH: Weinheim, Germany, pp. 97–149 (2011).
P. Štarha, Z. Trávníèek, A. Popa, I. Popa, T. Muchová and V. Brabec, J. Inorg. Biochem., 115, 57 (2012); https://doi.org/10.1016/j.jinorgbio.2012.05.006.
N. Ferri, S. Cazzaniga, L. Mazzarella, G. Curigliano, G. Lucchini, D. Zerla, R. Gandolfi, G. Facchetti, M. Pellizzoni and I. Rimoldi, Bioorg. Med. Chem., 21, 2379 (2013); https://doi.org/10.1016/j.bmc.2013.01.063.
C. Icsel, V.T. Yilmaz, F. Ari, E. Ulukaya and W.T.A. Harrison, Eur. J. Med. Chem., 60, 386 (2013); https://doi.org/10.1016/j.ejmech.2012.12.002
R.C. Johnstone, G.Y. Park and S.J. Lippard, Anticancer Res., 34, 471 (2014).
P.L.A. Popelier and G.J. Logothetis, J. Organomet. Chem., 555, 101 (1998); https://doi.org/10.1016/S0022-328X(97)00710-9.
R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press Oxford (1990).
R.F.W. Bader and H. Essen, J. Chem. Phys., 80, 1943 (1984); https://doi.org/10.1063/1.446956.
T. Kluge, E. Bette, M. Bette, J. Schmidt and D. Steinborn, J. Organomet. Chem., 762, 48 (2014); https://doi.org/10.1016/j.jorganchem.2014.03.030.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. 936 Soliman et al. Asian J. Chem. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc., Wallingford CT (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
T. Yanai, D. Tew and N. Handy, Chem. Phys. Lett., 393, 51 (2004); https://doi.org/10.1016/j.cplett.2004.06.011.
X. Xu and W.A. Goddard III, Proc. Natl. Acad. Sci. USA, 101, 2673 (2004); https://doi.org/10.1073/pnas.0308730100.
Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x.
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997); https://doi.org/10.1103/PhysRevLett.78.1396.
J.P. Blaudeau, M.P. McGrath, L.A. Curtiss and L. Radom, J. Chem. Phys., 107, 5016 (1997); https://doi.org/10.1063/1.474865.
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799.
A. Üngördü and N. Tezer, J. Saudi Chem. Soc., 21, 837 (2017); https://doi.org/10.1016/j.jscs.2017.04.003.
C. Møller and M.S. Plesset, Phys. Rev., 46, 618 (1934); https://doi.org/10.1103/PhysRev.46.618.
T. Lu and R. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885.
F. Weinhold and J.E. Carpenter, The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals and Radical Ions, Plenum, pp. 227 (1988).
D. Cremer and D. Kraka, Angew. Chem. Int., 23, 627 (1984); https://doi.org/10.1002/anie.198406271.
E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys., 117, 5529 (2002); https://doi.org/10.1063/1.1501133.
D. Cremer and E. Kraka, Croat. Chem. Acta, 57, 1259 (1984).
E. Espinosa, E. Molins and C. Lecomte, Chem. Phys. Lett., 285, 170 (1998); https://doi.org/10.1016/S0009-2614(98)00036-0.
C.S. López, O.N. Faza, F.P. Cossío, D.M. York and A.R. de Lera, Chem. Eur. J., 11, 1734 (2005); https://doi.org/10.1002/chem.200401026.