Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cu(II) and Ni(II) Complexes of Bidentate E-N-(4-Isopropyl benzylidene)isonicotinohydrazide: Synthesis, Characterization, DNA Cleavage and Antioxidant Activity
Corresponding Author(s) : R. Geetha
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
The reaction of Cu(NO3)2·3H2O and Ni(NO3)2·6H2O with E-N-(4-isopropylbenzylidine)isonicotinohydrazide derived from isonicotinic acid hydrazide with 4-isopropyl benzaldehyde were synthesized and characterized structurally by physico-chemical and spectral techniques. The metal-ligand ratio in metal complexes is in the order of metal:ligand1:ligand2 (1:1:1) indicating the formulae of the complexes as [M(SB)2(NO2)2] (where M = Cu2+ & Ni2+, SB = C16H17N3O). The magnetic moment and electronic spectral data suggest tetragonal geometry for Cu(II) complex and octahedral geometry for Ni(II) complex around the central metal ions. The FT-IR and Far-IR spectroscopic data suggest the bidentate nature of ligand. The geometry of the Cu(II) complex and its covalence is confirmed by EPR spectral data. The Thermal decomposition of metal complexes has been identified using thermogravimetric analysis. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. With the help of the agarose gel electrophoresis method, the DNA cleavage studies of Schiff base metal complexes were predicted. Also, the in-vitro antioxidant activity of Cu(II) complex was determined by a free radical scavenging assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.B. Bagal and B.M. Bhanage, Adv. Synth. Catal., 357, 883 (2015); https://doi.org/10.1002/adsc.201400940
- A. De, H.P. Ray, P. Jain, H. Kaur and N. Singh, J. Mol. Struct., 1199, 126901 (2020); https://doi.org/10.1016/j.molstruc.2019.126901
- B.J. Pages, D.L. Ang, E.P. Wright and J.R. Aldrich-Wright, Dalton Trans., 44, 3505 (2015); https://doi.org/10.1039/C4DT02700K
- O. Sebastian and A. Thapa, J. Chem. Pharm. Res., 7, 953 (2015).
- A.R. Baulard, J.C. Betts, J. Engohang-Ndong, S. Quan, R.A. McAdam, P.J. Brennan, C. Locht and G.S. Besra, Int. J. Biol. Chem., 275, 28326 (2000); https://doi.org/10.1074/jbc.M003744200
- C. Vilcheze and W.R. Jacobs Jr., J. Mol. Biol., 431, 3450 (2019); https://doi.org/10.1016/j.jmb.2019.02.016
- C. Vilcheze and W. Jacobs Jr., Microbiol. Spectr., 2, MGM2-0014-2013 (2014); https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
- M.M. Hajjari, M.-T. Golmakani and N. Sharif, LWT Food Sci. Technol., 145, 111373 (2021); https://doi.org/10.1016/j.lwt.2021.111373
- R.P. Singh, H.V. Gangadharappa and K. Mruthunjaya, Pharmacogn. J., 9, 292 (2017); https://doi.org/10.5530/pj.2017.3.51
- M.J. Tomy, K.V. Dileep, S. Prasanth, D.S. Preethidan, C. Sadasivan, A. Sabu and M. Haridas, Appl. Biochem. Biotechnol., 174, 388 (2014); https://doi.org/10.1007/s12010-014-1066-0
- W. Brand-Williams, M.E. Cuvelier and C. Berset, Lebensm. Wiss. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
- M. Chakrabarty, A. Ahmed and R.A. Lal, Int. J. Inorg. Chem., 2015, 121895 (2015); https://doi.org/10.1155/2015/121895
- K.K. Sharma, R. Singh, N. Fahmi and R.V. Singh, J. Coord. Chem., 63, 3071 (2010); https://doi.org/10.1080/00958972.2010.504986
- P.J.K. Inba, B. Annaraj, S. Thalamuthu and M.A. Neelakantan, Bioinorg. Chem. Appl., 2013, 439848 (2013); https://doi.org/10.1155/2013/439848
- R.B. Bennie, S.T. David, M. Sivasakthi, S.A.J. Mary, M. Seethalakshmi, S.D. Abraham, C. Joel and R. Antony, Chem. Sci. Trans., 3, 937 (2014); https://doi.org/10.7598/cst2014.805
- R. Adiguzel, N. Turan, K. Buldurun and H. Korkoca, Int. J. Pharmacol., 14, 9 (2017); https://doi.org/10.3923/ijp.2018.9.19
- R.N. Patel, N. Singh and V.L.N. Gundla, Polyhedron, 25, 3312 (2006); https://doi.org/10.1016/j.poly.2006.06.017
- R.K. Jain and A.P. Mishra, J. Saudi Chem. Soc., 20, 127 (2016); https://doi.org/10.1016/j.jscs.2012.06.002
- R. Ammal P, A.R. Prasad and A. Joseph, Heliyon, 2405, (2020); https://doi.org/10.1016/j.heliyon.2020.e05144
- S. Gopalakrishnan and J. Joseph, Mycobiology, 37, 141 (2009); https://doi.org/10.4489/MYCO.2009.37.2.141
- M.P. Sripathi, S. Berely and C.V. Ramana Reddy, Heteroatom Chem., 2019, 3507837 (2019); https://doi.org/10.1155/2019/3507837
- T. Zandvakili, S. Jamil Fatemi, Ebrahimipour, H. Ebrahimnejad, S. Yousef, J. Castro, M. Dusek and V. Eigner, J. Mol. Struct., 1249, (2021); https://doi.org/10.1016/j.molstruc.2021.131525
- B. Annaraj, C. Balakrishnan and M.A. Neelakantan, J. Photochem. Photobiol. B, 160, 278 (2016); https://doi.org/10.1016/j.jphotobiol.2016.04.021
- M.S. Surendra Babu, B.U. Rao, V. Krishna, S. Mustafa and G.N. Rao, J. Saudi Chem. Soc., 21, 291 (2017); https://doi.org/10.1016/j.jscs.2015.07.003
References
D.B. Bagal and B.M. Bhanage, Adv. Synth. Catal., 357, 883 (2015); https://doi.org/10.1002/adsc.201400940
A. De, H.P. Ray, P. Jain, H. Kaur and N. Singh, J. Mol. Struct., 1199, 126901 (2020); https://doi.org/10.1016/j.molstruc.2019.126901
B.J. Pages, D.L. Ang, E.P. Wright and J.R. Aldrich-Wright, Dalton Trans., 44, 3505 (2015); https://doi.org/10.1039/C4DT02700K
O. Sebastian and A. Thapa, J. Chem. Pharm. Res., 7, 953 (2015).
A.R. Baulard, J.C. Betts, J. Engohang-Ndong, S. Quan, R.A. McAdam, P.J. Brennan, C. Locht and G.S. Besra, Int. J. Biol. Chem., 275, 28326 (2000); https://doi.org/10.1074/jbc.M003744200
C. Vilcheze and W.R. Jacobs Jr., J. Mol. Biol., 431, 3450 (2019); https://doi.org/10.1016/j.jmb.2019.02.016
C. Vilcheze and W. Jacobs Jr., Microbiol. Spectr., 2, MGM2-0014-2013 (2014); https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
M.M. Hajjari, M.-T. Golmakani and N. Sharif, LWT Food Sci. Technol., 145, 111373 (2021); https://doi.org/10.1016/j.lwt.2021.111373
R.P. Singh, H.V. Gangadharappa and K. Mruthunjaya, Pharmacogn. J., 9, 292 (2017); https://doi.org/10.5530/pj.2017.3.51
M.J. Tomy, K.V. Dileep, S. Prasanth, D.S. Preethidan, C. Sadasivan, A. Sabu and M. Haridas, Appl. Biochem. Biotechnol., 174, 388 (2014); https://doi.org/10.1007/s12010-014-1066-0
W. Brand-Williams, M.E. Cuvelier and C. Berset, Lebensm. Wiss. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
M. Chakrabarty, A. Ahmed and R.A. Lal, Int. J. Inorg. Chem., 2015, 121895 (2015); https://doi.org/10.1155/2015/121895
K.K. Sharma, R. Singh, N. Fahmi and R.V. Singh, J. Coord. Chem., 63, 3071 (2010); https://doi.org/10.1080/00958972.2010.504986
P.J.K. Inba, B. Annaraj, S. Thalamuthu and M.A. Neelakantan, Bioinorg. Chem. Appl., 2013, 439848 (2013); https://doi.org/10.1155/2013/439848
R.B. Bennie, S.T. David, M. Sivasakthi, S.A.J. Mary, M. Seethalakshmi, S.D. Abraham, C. Joel and R. Antony, Chem. Sci. Trans., 3, 937 (2014); https://doi.org/10.7598/cst2014.805
R. Adiguzel, N. Turan, K. Buldurun and H. Korkoca, Int. J. Pharmacol., 14, 9 (2017); https://doi.org/10.3923/ijp.2018.9.19
R.N. Patel, N. Singh and V.L.N. Gundla, Polyhedron, 25, 3312 (2006); https://doi.org/10.1016/j.poly.2006.06.017
R.K. Jain and A.P. Mishra, J. Saudi Chem. Soc., 20, 127 (2016); https://doi.org/10.1016/j.jscs.2012.06.002
R. Ammal P, A.R. Prasad and A. Joseph, Heliyon, 2405, (2020); https://doi.org/10.1016/j.heliyon.2020.e05144
S. Gopalakrishnan and J. Joseph, Mycobiology, 37, 141 (2009); https://doi.org/10.4489/MYCO.2009.37.2.141
M.P. Sripathi, S. Berely and C.V. Ramana Reddy, Heteroatom Chem., 2019, 3507837 (2019); https://doi.org/10.1155/2019/3507837
T. Zandvakili, S. Jamil Fatemi, Ebrahimipour, H. Ebrahimnejad, S. Yousef, J. Castro, M. Dusek and V. Eigner, J. Mol. Struct., 1249, (2021); https://doi.org/10.1016/j.molstruc.2021.131525
B. Annaraj, C. Balakrishnan and M.A. Neelakantan, J. Photochem. Photobiol. B, 160, 278 (2016); https://doi.org/10.1016/j.jphotobiol.2016.04.021
M.S. Surendra Babu, B.U. Rao, V. Krishna, S. Mustafa and G.N. Rao, J. Saudi Chem. Soc., 21, 291 (2017); https://doi.org/10.1016/j.jscs.2015.07.003