Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Pot Green Synthesis of Cyclohepta[d]pyrimidine-2(5H)-thione Derivatives using Iron Titanate (FeTiO3, Ilmenite) Nanoparticles and Evaluation of their Antibacterial Activity
Corresponding Author(s) : T. Rambabu
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
Iron titanate nanoparticles (FeTiO3-NPs, TiFe-0.5, TiFe-1.0, TiFe-2.0 with fixed and variable compositions of Fe and Ti, respectively) were synthesized under ultrasonication and characterized using XRD, FESEM-EDAX and UV-vis DRS spectral techniques. The XRD analysis has clearly indicated the characteristic peaks in the nanoparticles. The morphologies have shown the spherical shaped particles and in the EDAX analysis, the respective elements (Fe, Ti, O) in the prepared nanoparticles were identified. Similarly, the absorption maxima of the nanoparticles have increased with increase in the Ti content between 380-570 nm. Using these nanoparticles, cyclohepta[d]pyrimidine-2(5H)-thione derivatives (4a-e) were synthesized through one-pot approach with cycloheptanone (1), some substituted benzaldehyes (2a-e) and thiourea (3) as the precursors, which was performed under the guidelines of green chemistry. The progress of the reactions were monitored by TLC and the formed derivatives were characterized by using 1H NMR, FTIR and Mass spectral techniques along with the determination of their melting points. The NPs were magnetically separable and with its recycled forms, the reaction was conducted in 3 consecutive cycles and observed that the % yields have not varied much. The antibacterial activity studies were conducted against Gram-negative Escherichia coli, Klebsiella pneumonia, Gram-positive Staphylococcus aurues, Bacillus subtilis bacteria with the derivatives (4a-e). In these studies, almost all the derivatives have shown from moderate to better antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.D. Cox, M.J. Breslin and B.J. Mariano, Tetrahedron Lett., 45, 1489 (2004); https://doi.org/10.1016/j.tetlet.2003.12.026
- B.K. Karale, C.H. Gill, M. Khan, V.P. Chavan, A.S. Mane and M.S. Shingare, Indian J. Chem., 41B, 1957 (2002).
- M.A. El-Hashash, M.R. Mahmoud and S.A. Madboli, Indian J. Chem., 32B, 449 (1993).
- D.J. Brown, The Chemistry of Heterocyclic Compounds, The Pyrimidines, Vol. 52, Wiley: New York, USA (1994).
- M. Kidwai and M. Mishra, J. Serb. Chem. Soc., 69, 247 (2004); https://doi.org/10.2298/JSC0404247K
- D.J. Brown, Eds.: A.J. Boulton and A. McKillop, Comprehensive Heterocyclic Chemistry, Pergamon: Oxford, UK, vol. 3, p. 150 (1984).
- C.O. Kappe, Tetrahedron, 49, 6937 (1993); https://doi.org/10.1016/S0040-4020(01)87971-0
- A. Dondoni, A. Massi and S. Sabbatini, Tetrahedron Lett., 43, 5913 (2002); https://doi.org/10.1016/S0040-4039(02)01269-8
- C. Ramalingan and Y. Kwak, Tetrahedron, 64, 5023 (2008); https://doi.org/10.1016/j.tet.2008.03.078
- S.M. Sondhi, R.N. Goyal, A.M. Lahoti, N. Singh, R. Shukla and R. Raghubir, Bioorg. Med. Chem., 13, 3185 (2005); https://doi.org/10.1016/j.bmc.2005.02.047
- M. Movassaghi and M.D. Hill, J. Am. Chem. Soc., 128, 14254 (2006); https://doi.org/10.1021/ja066405m
- J. Safaei-Ghomi and A. Ghasemzadeh, J. Serb. Chem. Soc., 76, 679 (2011); https://doi.org/10.2298/JSC100212057S
- X. Yang, X. Wang and Z. Zhang, J. Cryst. Growth, 277, 467 (2005); https://doi.org/10.1016/j.jcrysgro.2005.02.004
- J.A. Gomes, M.H. Sousa, F.A. Tourinho, J. Mestnik-Filho, R. Itri and J. Depeyrot, J. Magn. Magn. Mater., 289, 184 (2005); https://doi.org/10.1016/j.jmmm.2004.11.053
- A.T. Raghavender, R.G. Kulkarni and K.M. Jadhav, Zhongguo Wuli Xuekan, 46, 366 (2008).
- N. Iftimie, E. Rezlescu, P.D. Popa and N. Rezlescu, J. Optoelectron. Adv. Mater., 8, 1016 (2006).
- L. Satyanarayana, K.M. Reddy and S.V. Manorama, Mater. Chem. Phys., 82, 21 (2003);
- https://doi.org/10.1016/S0254-0584(03)00170-6
- Z. Tianshu, P. Hing, Z. Jiancheng and K. Lingbing, Mater. Chem. Phys., 61, 192 (1999); https://doi.org/10.1016/S0254-0584(99)00133-9
- X. Chu, X. Liu, Y. Song and G. Meng, Sens. Actuators B Chem., 61, 19 (1999); https://doi.org/10.1016/S0925-4005(99)00269-5
- V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan and K.S. Nagaraja, J. Exp. Nanosci., 8, 358 (2013); https://doi.org/10.1080/17458080.2012.690893
- A. Shukla, A.K. Bhardwaj, B.K. Pandey, S.C. Singh, K.N. Uttam, J. Shah, R.K. Kotnala and R. Gopal, J. Mater. Sci. Mater. Electron., 28, 15380 (2017); https://doi.org/10.1007/s10854-017-7423-3
- A. Shukla, A.K. Bhardwaj, S.C. Singh, K.N. Uttam, N. Gautam, A.K. Himanshu, J. Shah, R.K. Kotnala and R. Gopal, J. Appl. Phys., 123, 161411 (2018); https://doi.org/10.1063/1.5008733
- D.H. Dawood, E.M.H. Abbas, T.A. Farghaly, M.M. Ali and M.F. Ibrahim, Med. Chem., 15, 277 (2019); https://doi.org/10.2174/1573406414666180912113226
- A.M. Mudarra Navarro, A.V. Gil Rebaza, K.L. Salcedo Rodriguez, J.J. Melo Quintero, C.E. Rodriguez Torres, M. Weissmann and L.A. Errico, J. Phys. Chem. C, 123, 21694 (2019); https://doi.org/10.1021/acs.jpcc.9b06550
- R.A.P. Ribeiro and S.R. de Lazaro, RSC Adv., 4, 59839 (2014); https://doi.org/10.1039/C4RA11320A
- A.V. Prasada Rao, A.M. Umabala and P. Suresh, J. Applicable Chem., 4, 1145 (2015).
- B.A. de Marco, B.S. Rechelo, E.G. Totoli, A.C. Kogawa and H.R.N. Salgado, Saudi Pharm. J., 27, 1 (2019); https://doi.org/10.1016/j.jsps.2018.07.011
- R.S. Hiremath and H.S. Shubha, J. Res. Ayurveda, 31, 260 (2010); https://doi.org/10.4103/0974-8520.72412
References
C.D. Cox, M.J. Breslin and B.J. Mariano, Tetrahedron Lett., 45, 1489 (2004); https://doi.org/10.1016/j.tetlet.2003.12.026
B.K. Karale, C.H. Gill, M. Khan, V.P. Chavan, A.S. Mane and M.S. Shingare, Indian J. Chem., 41B, 1957 (2002).
M.A. El-Hashash, M.R. Mahmoud and S.A. Madboli, Indian J. Chem., 32B, 449 (1993).
D.J. Brown, The Chemistry of Heterocyclic Compounds, The Pyrimidines, Vol. 52, Wiley: New York, USA (1994).
M. Kidwai and M. Mishra, J. Serb. Chem. Soc., 69, 247 (2004); https://doi.org/10.2298/JSC0404247K
D.J. Brown, Eds.: A.J. Boulton and A. McKillop, Comprehensive Heterocyclic Chemistry, Pergamon: Oxford, UK, vol. 3, p. 150 (1984).
C.O. Kappe, Tetrahedron, 49, 6937 (1993); https://doi.org/10.1016/S0040-4020(01)87971-0
A. Dondoni, A. Massi and S. Sabbatini, Tetrahedron Lett., 43, 5913 (2002); https://doi.org/10.1016/S0040-4039(02)01269-8
C. Ramalingan and Y. Kwak, Tetrahedron, 64, 5023 (2008); https://doi.org/10.1016/j.tet.2008.03.078
S.M. Sondhi, R.N. Goyal, A.M. Lahoti, N. Singh, R. Shukla and R. Raghubir, Bioorg. Med. Chem., 13, 3185 (2005); https://doi.org/10.1016/j.bmc.2005.02.047
M. Movassaghi and M.D. Hill, J. Am. Chem. Soc., 128, 14254 (2006); https://doi.org/10.1021/ja066405m
J. Safaei-Ghomi and A. Ghasemzadeh, J. Serb. Chem. Soc., 76, 679 (2011); https://doi.org/10.2298/JSC100212057S
X. Yang, X. Wang and Z. Zhang, J. Cryst. Growth, 277, 467 (2005); https://doi.org/10.1016/j.jcrysgro.2005.02.004
J.A. Gomes, M.H. Sousa, F.A. Tourinho, J. Mestnik-Filho, R. Itri and J. Depeyrot, J. Magn. Magn. Mater., 289, 184 (2005); https://doi.org/10.1016/j.jmmm.2004.11.053
A.T. Raghavender, R.G. Kulkarni and K.M. Jadhav, Zhongguo Wuli Xuekan, 46, 366 (2008).
N. Iftimie, E. Rezlescu, P.D. Popa and N. Rezlescu, J. Optoelectron. Adv. Mater., 8, 1016 (2006).
L. Satyanarayana, K.M. Reddy and S.V. Manorama, Mater. Chem. Phys., 82, 21 (2003);
https://doi.org/10.1016/S0254-0584(03)00170-6
Z. Tianshu, P. Hing, Z. Jiancheng and K. Lingbing, Mater. Chem. Phys., 61, 192 (1999); https://doi.org/10.1016/S0254-0584(99)00133-9
X. Chu, X. Liu, Y. Song and G. Meng, Sens. Actuators B Chem., 61, 19 (1999); https://doi.org/10.1016/S0925-4005(99)00269-5
V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan and K.S. Nagaraja, J. Exp. Nanosci., 8, 358 (2013); https://doi.org/10.1080/17458080.2012.690893
A. Shukla, A.K. Bhardwaj, B.K. Pandey, S.C. Singh, K.N. Uttam, J. Shah, R.K. Kotnala and R. Gopal, J. Mater. Sci. Mater. Electron., 28, 15380 (2017); https://doi.org/10.1007/s10854-017-7423-3
A. Shukla, A.K. Bhardwaj, S.C. Singh, K.N. Uttam, N. Gautam, A.K. Himanshu, J. Shah, R.K. Kotnala and R. Gopal, J. Appl. Phys., 123, 161411 (2018); https://doi.org/10.1063/1.5008733
D.H. Dawood, E.M.H. Abbas, T.A. Farghaly, M.M. Ali and M.F. Ibrahim, Med. Chem., 15, 277 (2019); https://doi.org/10.2174/1573406414666180912113226
A.M. Mudarra Navarro, A.V. Gil Rebaza, K.L. Salcedo Rodriguez, J.J. Melo Quintero, C.E. Rodriguez Torres, M. Weissmann and L.A. Errico, J. Phys. Chem. C, 123, 21694 (2019); https://doi.org/10.1021/acs.jpcc.9b06550
R.A.P. Ribeiro and S.R. de Lazaro, RSC Adv., 4, 59839 (2014); https://doi.org/10.1039/C4RA11320A
A.V. Prasada Rao, A.M. Umabala and P. Suresh, J. Applicable Chem., 4, 1145 (2015).
B.A. de Marco, B.S. Rechelo, E.G. Totoli, A.C. Kogawa and H.R.N. Salgado, Saudi Pharm. J., 27, 1 (2019); https://doi.org/10.1016/j.jsps.2018.07.011
R.S. Hiremath and H.S. Shubha, J. Res. Ayurveda, 31, 260 (2010); https://doi.org/10.4103/0974-8520.72412