Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Optical, Morphological and Magnetic Properties of Hematite Nanorods in Deep Eutectic Solvent with its Antibacterial and Photocatalytic Applications
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Deep eutectic solvent comprising of choline chloride and D(+)-glucose was synthesized by mixing in the molar ratio 2:1. Iron oxide nanoparticles were successfully synthesized by co-precipitation method. Deep eutectic solvent consisting of D(+)-glucose acts as a promising reducing agent for the synthesis of iron oxide nanoparticles. Direct optical band gap of iron oxide nanoparticles was found to be 2.262 eV. Powder X-ray diffraction technique was used to identify the crystalline phases. Surface morphology analysis by Field emission scanning electron microscopy and high resolution transmission electron microscopy confirmed the rod shape structure of the iron oxide nanoparticles. Selected area electron diffraction pattern revealed the identity of lattice planes with the XRD data. The antibacterial and photocatalytic activities of the iron oxide nanoparticles were also studied. The synthesized iron oxide nanoparticles showed appreciable antibacterial and photocatalytic activities
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hayyan, T. Aissaoui, M.A. Hashim, M.A.H. AlSaadi and A. Hayyan, J. Taiwan Inst. Chem. Engin., 50, 24 (2015); https://doi.org/10.1016/j.jtice.2015.03.001.
- A. Abo-Hamad, M. Hayyan, M.A.H. AlSaadi and M.A. Hashim, Chem. Eng. J., 273, 551 (2015); https://doi.org/10.1016/j.cej.2015.03.091.
- S. Bagheri, K.G. Chandrappa and S.B.A. Hamid, Res. J. Chem. Sci., 3, 62 (2013).
- W.F. Schmidt and S. Singh, J. Nanosci. Nanotechnol., 14, 1 (2014); https://doi.org/10.1166/jnn.2014.9265.
- S.S. Behera, J.K. Patra, K. Pramanik, N. Panda and H. Thatoi, World J. Nano Sci. Engin., 2, 196 (2012); https://doi.org/10.4236/wjnse.2012.24026.
- S.A. Mahdy, Q.J. Raheed and P.T. Kalaichelvan, Int. J. Modern Eng. Res., 2, 578 (2012).
- M. Mohopatra and S. Anand, Int. J. Eng. Technol., 2, 127 (2010).
- K.M. Reza, A. Kurny and F. Gulshan, Int. J. Environ. Sci. Dev., 7, 325 (2016); https://doi.org/10.7763/IJESD.2016.V7.793.
- M.I. Kim, J.S. Im, S.J. In, H. Kim, J.G. Kim and Y.S. Lee, Carbon Lett., 9, 195 (2008); https://doi.org/10.5714/CL.2008.9.3.195.
- M.A. Rauf and S.S. Ashraf, Chem. Eng. J., 151, 10 (2009); https://doi.org/10.1016/j.cej.2009.02.026.
- A. Hayyan, F.S. Mjalli, I.M. AlNashef, Y.M. Al-Wahaibi, T. Al-Wahaibi and M.A. Hashim, J. Mol. Liq., 178, 137 (2013); https://doi.org/10.1016/j.molliq.2012.11.025.
- F. Chen, S. Xie, J. Zhang and R. Liu, Mater. Lett., 112, 177 (2013); https://doi.org/10.1016/j.matlet.2013.09.022.
- P. Pavendan and C.S. Rajasekaran, Int. J. PharmTech. Res., 4, 476 (2012).
- F.N. Sayed and V. Polshettiwar, Scient. Rep., 5, 09733 (2015); https://doi.org/10.1038/srep09733.
- T. Wang, S. Zhou, C. Zhang, J. Lian, Y. Liang and W. Yuan, New J. Chem., 38, 46 (2014); https://doi.org/10.1039/C3NJ01060K.
- M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533.
- L. Nadjia, F. Abdelkader and B. Ahmed, J. Chem. Eng. Process Technol., 2, 1 (2011); https://doi.org/10.4172/2157-7048.1000108.
References
M. Hayyan, T. Aissaoui, M.A. Hashim, M.A.H. AlSaadi and A. Hayyan, J. Taiwan Inst. Chem. Engin., 50, 24 (2015); https://doi.org/10.1016/j.jtice.2015.03.001.
A. Abo-Hamad, M. Hayyan, M.A.H. AlSaadi and M.A. Hashim, Chem. Eng. J., 273, 551 (2015); https://doi.org/10.1016/j.cej.2015.03.091.
S. Bagheri, K.G. Chandrappa and S.B.A. Hamid, Res. J. Chem. Sci., 3, 62 (2013).
W.F. Schmidt and S. Singh, J. Nanosci. Nanotechnol., 14, 1 (2014); https://doi.org/10.1166/jnn.2014.9265.
S.S. Behera, J.K. Patra, K. Pramanik, N. Panda and H. Thatoi, World J. Nano Sci. Engin., 2, 196 (2012); https://doi.org/10.4236/wjnse.2012.24026.
S.A. Mahdy, Q.J. Raheed and P.T. Kalaichelvan, Int. J. Modern Eng. Res., 2, 578 (2012).
M. Mohopatra and S. Anand, Int. J. Eng. Technol., 2, 127 (2010).
K.M. Reza, A. Kurny and F. Gulshan, Int. J. Environ. Sci. Dev., 7, 325 (2016); https://doi.org/10.7763/IJESD.2016.V7.793.
M.I. Kim, J.S. Im, S.J. In, H. Kim, J.G. Kim and Y.S. Lee, Carbon Lett., 9, 195 (2008); https://doi.org/10.5714/CL.2008.9.3.195.
M.A. Rauf and S.S. Ashraf, Chem. Eng. J., 151, 10 (2009); https://doi.org/10.1016/j.cej.2009.02.026.
A. Hayyan, F.S. Mjalli, I.M. AlNashef, Y.M. Al-Wahaibi, T. Al-Wahaibi and M.A. Hashim, J. Mol. Liq., 178, 137 (2013); https://doi.org/10.1016/j.molliq.2012.11.025.
F. Chen, S. Xie, J. Zhang and R. Liu, Mater. Lett., 112, 177 (2013); https://doi.org/10.1016/j.matlet.2013.09.022.
P. Pavendan and C.S. Rajasekaran, Int. J. PharmTech. Res., 4, 476 (2012).
F.N. Sayed and V. Polshettiwar, Scient. Rep., 5, 09733 (2015); https://doi.org/10.1038/srep09733.
T. Wang, S. Zhou, C. Zhang, J. Lian, Y. Liang and W. Yuan, New J. Chem., 38, 46 (2014); https://doi.org/10.1039/C3NJ01060K.
M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533.
L. Nadjia, F. Abdelkader and B. Ahmed, J. Chem. Eng. Process Technol., 2, 1 (2011); https://doi.org/10.4172/2157-7048.1000108.