Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Simultaneous Removal of Molybdate and Chromate Ions from Industrial Wastewater using Biosorbents Derived from Stems of Murraya koenigii: Thermodynamics, Isothermal and Kinetic Investigations
Corresponding Author(s) : Kunta Ravindhranath
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
The removal of molybdate and chromate from industrial wastewater is one of the major tasks of water remediation methods. The disposal of ill-treated effluents containing these toxic heavy metal oxyanions into aqueous environment, effects aquatic life, ecosystems and endogenous the human life. The adsorptive methods available so far are to removal either molybdate or chromate ions and not their simultaneous removal. In the present investigation, a bioadsorbent derived from Murraya koenigii plant has the potential to remove both molybdate and chromate ions simultaneously at pH 2.5. The adsorbent was characterized using XRD and FTIR besides the assessment of conventional physico-chemical parameters. Various extraction conditions were investigated and optimized using simulated solutions of individual as well as mixtures of molybdate and chromate ions. The optimum conditions for simultaneous removal are: pH: 2.5; dosage of adsorbent: 2.5 g/L; contact time: 120 min; rpm: 300; temp.: 30 ± 1 ºC. The extraction was marginally effected by common co-ions. The adsorbents can be regenerated and reused for three cycles. Thermodynamic parameters revealed that the adsorption of molybdate and chromate onto the surface of the adsorbent is endothermic and spontaneous. Further, the magnitude of ΔH values and IR data confirmed that the nature of adsorption is ‘ion exchange and/or a sort of surface complex formation’. Kinetics of adsorption was analyzed by various models and of them, pseudo-second-order model explains well. Of the various isotherm models analyzed, Langmuir model fits well and thereby indicating the homogeneity surface of the adsorbent and unform distribution of active sites. The developed method was applied to treat real wastewater samples collected from industrial and mining effluents and found to be highly effective. The novelty of the present investigation is that a simple and effective bioadsorbent is developed for the simultaneous removal of highly toxic molybdate and chromate ions from the industrial wastewaters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Goyal, S.C. Jain and U.C. Banerjee, Adv. Environ. Res., 7, 311 (2003); https://doi.org/10.1016/S1093-0191(02)00004-7
- B.C. Bostick, S. Fendorf and G.R. Helz, Environ. Sci. Technol., 37, 285 (2003); https://doi.org/10.1021/es0257467
- E. Weidner and F. Ciesielczyk, Materials, 12, 927 (2019); https://doi.org/10.3390/ma12060927
- K. Bourikas, T. Hiemstra and W.H. Van Riemsdijk, J. Phys. Chem. B, 105, 2393 (2001); https://doi.org/10.1021/jp002267q
- Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You and C.K. Chang, Chemosphere, 148, 452 (2016); https://doi.org/10.1016/j.chemosphere.2016.01.054
- R. Shrivastava, R.K. Upreti, P.K. Seth and U.C. Chaturvedi, FEMS Immunol. Med. Microbiol., 34, 1 (2002); https://doi.org/10.1111/j.1574-695X.2002.tb00596.x
- A. Zhitkovich, Chem. Res. Toxicol., 24, 1617 (2011); https://doi.org/10.1021/tx200251t
- A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012
- S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
- S.A. Cavaco, S. Fernandes, M.M. Quina and L.M. Ferreira, J. Hazard. Mater., 144, 634 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.087
- S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016); https://doi.org/10.1016/j.susmat.2016.06.002
- G.P. Gallios and M. Vaclavikova, Environ. Chem. Lett., 6, 235 (2008); https://doi.org/10.1007/s10311-007-0128-8
- P. Yuan, D. Liu, M.D. Fan, D. Yang, R.L. Zhu, F. Ge, J.X. Zhu and H.P. He, J. Hazard. Mater., 173, 614 (2010); https://doi.org/10.1016/j.jhazmat.2009.08.129
- H.I. Adegoke, F.A. Adekola, O.S. Fatoki and B.J. Ximba, Pol. J. Environ. Stud., 22, 7 (2013).
- N. Xu, C. Christodoulatos and W. Braida, Chemosphere, 64, 1325 (2006); https://doi.org/10.1016/j.chemosphere.2005.12.043
- A. Afkhami, T. Madrakian and A. Amini, Desalination, 243, 258 (2009); https://doi.org/10.1016/j.desal.2008.04.028
- Y.C. Chen and C.Y. Lu, J. Ind. Eng. Chem., 20, 2521 (2014); https://doi.org/10.1016/j.jiec.2013.10.035
- J.J. Lian, S.G. Xu, N.B. Chang, C.W. Han and J.W. Liu, Environ. Eng. Sci., 30, 213 (2013); https://doi.org/10.1089/ees.2011.0441
- P. Derakhshi, H. Ghafourian, M. Khosravi and M. Rabani, World Appl. Sci. J., 7, 230 (2009).
- N. Xu, C. Christodoulatos and W. Braida, Chemosphere, 62, 1726 (2006); https://doi.org/10.1016/j.chemosphere.2005.06.025
- B. Verbinnen, C. Block, D. Hannes, P. Lievens, M. Vaclavikova, K. Stefusova, G. Gallios and C. Vandecasteele, Water Environ. Res., 84, 753 (2012); https://doi.org/10.2175/106143012X13373550427318
- J. Ponou, J. Kim, L.P. Wang, G. Dodbiba and T. Fujita, Chem. Eng. J., 172, 906 (2011); https://doi.org/10.1016/j.cej.2011.06.081
- Y.H. Rao and K. Ravindhranath, Rasayan J. Chem., 10, 1104 (2017); https://doi.org/10.7324/RJC.2017.1041829
- U.K. Garg, M.P. Kaur, V.K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007); https://doi.org/10.1016/j.jhazmat.2006.06.056
- G. Cimino, A. Passerini and G. Toscano, Water Res., 34, 2955 (2000); https://doi.org/10.1016/S0043-1354(00)00048-8
- A.N. Babu, G.K. Mohan and K. Ravindhranath, Int. J. Chemtech Res., 9, 506 (2016).
- G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019); https://doi.org/10.1007/s13762-017-1593-7
- Z.A. Al-Othman, R. Ali and M. Naushad, Chem. Eng. J., 184, 238 (2012); https://doi.org/10.1016/j.cej.2012.01.048
- S. Ravulapalli and K. Ravindhranath, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413
- W.K. Biftu and K. Ravindhranath, Asian J. Chem., 33, 281 (2021); https://doi.org/10.14233/ajchem.2021.22953
- S.L. Pala, W.K. Biftu, M. Suneetha and K. Ravindhranath, Int. J. Environ. Anal. Chem., (2021); https://doi.org/10.1080/03067319.2021.1927004
- C. Namasivayam and K. Kadirvelu, Bioresour. Technol., 62, 123 (1997); https://doi.org/10.1016/S0960-8524(97)00074-6
- A.N. El-Hendawy, S.E. Samra and B.S. Girgis, Colloids Surf. A Physicochem. Eng. Asp., 180, 209 (2001); https://doi.org/10.1016/S0927-7757(00)00682-8
- S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); https://doi.org/10.1021/ja01269a023
- S. Ravulapalli and R. Kunta, J. Fluor. Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013
- M. Suneetha, B.S. Sundar and K. Ravindhranath, J. Anal. Sci. Technol., 6, 15 (2015); https://doi.org/10.1186/s40543-014-0042-1
- A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindhranath, J. Anal. Methods Chem., 2017, 4650594 (2017); https://doi.org/10.1155/2017/4650594
- C. Fan and Y. Zhang, J. Geochem. Explor., 188, 95 (2018); https://doi.org/10.1016/j.gexplo.2018.01.020
- C. Sun, C. Li, C. Wang, R. Qu, Y. Niu and H. Geng, Chem. Eng. J., 200-202, 291 (2012); https://doi.org/10.1016/j.cej.2012.06.007
- A.N. Babu, D.S. Reddy, G.S. Kumar, K. Ravindhranath and G.K. Mohan, J. Environ. Manage., 218, 602 (2018); https://doi.org/10.1016/j.jenvman.2018.04.091
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
- H.M. Freundlich, Z. Phys. Chem., 57, 1100 (1906).
- M.J. Temkin and V. Pyzhev, Acta Physiochim USSR, 12, 217 (1940).
- M.M. Dubinin, Dokl. Akad. Nauk SSSR, 55, 327 (1947).
- W.K. Biftu, M. Suneetha and K. Ravindhranath, Biomass Conv. Bioref., (2021); https://doi.org/10.1007/s13399-021-01568-w
- Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
- Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Purif. Methods, 29, 189 (2000); https://doi.org/10.1081/SPM-100100009
- A.A. Atia, Appl. Clay Sci., 41, 73 (2008); https://doi.org/10.1016/j.clay.2007.09.011
- Y.W. Cui, J. Li, Z.F. Du and Y.Z. Peng, PLoS One, 11, e0161780 (2016); https://doi.org/10.1371/journal.pone.0161780
- Z.N. Huang, X.L. Wang and D.S. Yang, Water Sci. Eng., 8, 226 (2015); https://doi.org/10.1016/j.wse.2015.01.009
- M.A. Atieh, Procedia Environ. Sci., 4, 281 (2011); https://doi.org/10.1016/j.proenv.2011.03.033
- X. Lv, J. Xu, G. Jiang, J. Tang and X. Xu, J. Colloid Interface Sci., 369, 460 (2012); https://doi.org/10.1016/j.jcis.2011.11.049
References
N. Goyal, S.C. Jain and U.C. Banerjee, Adv. Environ. Res., 7, 311 (2003); https://doi.org/10.1016/S1093-0191(02)00004-7
B.C. Bostick, S. Fendorf and G.R. Helz, Environ. Sci. Technol., 37, 285 (2003); https://doi.org/10.1021/es0257467
E. Weidner and F. Ciesielczyk, Materials, 12, 927 (2019); https://doi.org/10.3390/ma12060927
K. Bourikas, T. Hiemstra and W.H. Van Riemsdijk, J. Phys. Chem. B, 105, 2393 (2001); https://doi.org/10.1021/jp002267q
Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You and C.K. Chang, Chemosphere, 148, 452 (2016); https://doi.org/10.1016/j.chemosphere.2016.01.054
R. Shrivastava, R.K. Upreti, P.K. Seth and U.C. Chaturvedi, FEMS Immunol. Med. Microbiol., 34, 1 (2002); https://doi.org/10.1111/j.1574-695X.2002.tb00596.x
A. Zhitkovich, Chem. Res. Toxicol., 24, 1617 (2011); https://doi.org/10.1021/tx200251t
A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012
S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
S.A. Cavaco, S. Fernandes, M.M. Quina and L.M. Ferreira, J. Hazard. Mater., 144, 634 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.087
S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016); https://doi.org/10.1016/j.susmat.2016.06.002
G.P. Gallios and M. Vaclavikova, Environ. Chem. Lett., 6, 235 (2008); https://doi.org/10.1007/s10311-007-0128-8
P. Yuan, D. Liu, M.D. Fan, D. Yang, R.L. Zhu, F. Ge, J.X. Zhu and H.P. He, J. Hazard. Mater., 173, 614 (2010); https://doi.org/10.1016/j.jhazmat.2009.08.129
H.I. Adegoke, F.A. Adekola, O.S. Fatoki and B.J. Ximba, Pol. J. Environ. Stud., 22, 7 (2013).
N. Xu, C. Christodoulatos and W. Braida, Chemosphere, 64, 1325 (2006); https://doi.org/10.1016/j.chemosphere.2005.12.043
A. Afkhami, T. Madrakian and A. Amini, Desalination, 243, 258 (2009); https://doi.org/10.1016/j.desal.2008.04.028
Y.C. Chen and C.Y. Lu, J. Ind. Eng. Chem., 20, 2521 (2014); https://doi.org/10.1016/j.jiec.2013.10.035
J.J. Lian, S.G. Xu, N.B. Chang, C.W. Han and J.W. Liu, Environ. Eng. Sci., 30, 213 (2013); https://doi.org/10.1089/ees.2011.0441
P. Derakhshi, H. Ghafourian, M. Khosravi and M. Rabani, World Appl. Sci. J., 7, 230 (2009).
N. Xu, C. Christodoulatos and W. Braida, Chemosphere, 62, 1726 (2006); https://doi.org/10.1016/j.chemosphere.2005.06.025
B. Verbinnen, C. Block, D. Hannes, P. Lievens, M. Vaclavikova, K. Stefusova, G. Gallios and C. Vandecasteele, Water Environ. Res., 84, 753 (2012); https://doi.org/10.2175/106143012X13373550427318
J. Ponou, J. Kim, L.P. Wang, G. Dodbiba and T. Fujita, Chem. Eng. J., 172, 906 (2011); https://doi.org/10.1016/j.cej.2011.06.081
Y.H. Rao and K. Ravindhranath, Rasayan J. Chem., 10, 1104 (2017); https://doi.org/10.7324/RJC.2017.1041829
U.K. Garg, M.P. Kaur, V.K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007); https://doi.org/10.1016/j.jhazmat.2006.06.056
G. Cimino, A. Passerini and G. Toscano, Water Res., 34, 2955 (2000); https://doi.org/10.1016/S0043-1354(00)00048-8
A.N. Babu, G.K. Mohan and K. Ravindhranath, Int. J. Chemtech Res., 9, 506 (2016).
G.V. Krishna Mohan, A. Naga Babu, K. Kalpana and K. Ravindhranath, Int. J. Environ. Sci. Technol., 16, 101 (2019); https://doi.org/10.1007/s13762-017-1593-7
Z.A. Al-Othman, R. Ali and M. Naushad, Chem. Eng. J., 184, 238 (2012); https://doi.org/10.1016/j.cej.2012.01.048
S. Ravulapalli and K. Ravindhranath, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413
W.K. Biftu and K. Ravindhranath, Asian J. Chem., 33, 281 (2021); https://doi.org/10.14233/ajchem.2021.22953
S.L. Pala, W.K. Biftu, M. Suneetha and K. Ravindhranath, Int. J. Environ. Anal. Chem., (2021); https://doi.org/10.1080/03067319.2021.1927004
C. Namasivayam and K. Kadirvelu, Bioresour. Technol., 62, 123 (1997); https://doi.org/10.1016/S0960-8524(97)00074-6
A.N. El-Hendawy, S.E. Samra and B.S. Girgis, Colloids Surf. A Physicochem. Eng. Asp., 180, 209 (2001); https://doi.org/10.1016/S0927-7757(00)00682-8
S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938); https://doi.org/10.1021/ja01269a023
S. Ravulapalli and R. Kunta, J. Fluor. Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013
M. Suneetha, B.S. Sundar and K. Ravindhranath, J. Anal. Sci. Technol., 6, 15 (2015); https://doi.org/10.1186/s40543-014-0042-1
A. Naga Babu, G.V. Krishna Mohan, K. Kalpana and K. Ravindhranath, J. Anal. Methods Chem., 2017, 4650594 (2017); https://doi.org/10.1155/2017/4650594
C. Fan and Y. Zhang, J. Geochem. Explor., 188, 95 (2018); https://doi.org/10.1016/j.gexplo.2018.01.020
C. Sun, C. Li, C. Wang, R. Qu, Y. Niu and H. Geng, Chem. Eng. J., 200-202, 291 (2012); https://doi.org/10.1016/j.cej.2012.06.007
A.N. Babu, D.S. Reddy, G.S. Kumar, K. Ravindhranath and G.K. Mohan, J. Environ. Manage., 218, 602 (2018); https://doi.org/10.1016/j.jenvman.2018.04.091
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
H.M. Freundlich, Z. Phys. Chem., 57, 1100 (1906).
M.J. Temkin and V. Pyzhev, Acta Physiochim USSR, 12, 217 (1940).
M.M. Dubinin, Dokl. Akad. Nauk SSSR, 55, 327 (1947).
W.K. Biftu, M. Suneetha and K. Ravindhranath, Biomass Conv. Bioref., (2021); https://doi.org/10.1007/s13399-021-01568-w
Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Purif. Methods, 29, 189 (2000); https://doi.org/10.1081/SPM-100100009
A.A. Atia, Appl. Clay Sci., 41, 73 (2008); https://doi.org/10.1016/j.clay.2007.09.011
Y.W. Cui, J. Li, Z.F. Du and Y.Z. Peng, PLoS One, 11, e0161780 (2016); https://doi.org/10.1371/journal.pone.0161780
Z.N. Huang, X.L. Wang and D.S. Yang, Water Sci. Eng., 8, 226 (2015); https://doi.org/10.1016/j.wse.2015.01.009
M.A. Atieh, Procedia Environ. Sci., 4, 281 (2011); https://doi.org/10.1016/j.proenv.2011.03.033
X. Lv, J. Xu, G. Jiang, J. Tang and X. Xu, J. Colloid Interface Sci., 369, 460 (2012); https://doi.org/10.1016/j.jcis.2011.11.049