Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical H2 Production using Polypyrazole based Zinc(II) Complex in Alkaline Medium
Corresponding Author(s) : Mohamed M. Ibrahim
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
A zinc(II) complex of polypyazole containing ligand namely, [Tp*ZnCl] (Zn1) {Tp* = tris(3,5-dimethylpyrazolyl)borate}, along with its zinc(II) bound hydroxo complex [Tp*Zn–OH] (Zn2) were synthesized and characterized by FT-IR, Raman, 1H NMR techniques and elemental analysis. In alkaline solution (0.1 M KOH), the Zn2 modified glassy carbon (GC), namely GC–Zn2, was investigated as a molecular electrocatalyst for the hydrogen evolution reaction (HER). Different quantities (ca. 0.1–0.5 mg cm–2) of Zn2 were loaded on GC electrodes to make various GC–Zn2 electrodes. These electrodes were utilized as cathodes in 0.1 M KOH to produce H2 using linear sweep voltammetry (LSV) measurements. The HER electrocatalytic activity of the GC–Zn2 catalyst was found to be quite high and it increased with the catalyst loading density. The top performing electrocatalyst, GC–Zn2 (0.5 mg cm–2), demonstrated considerable HER catalytic performance with a low HER onset potential (EHER) of –33 mV vs. RHE and a high exchange current density of 0.59 mA cm–2. Moreover, the top performing electrocatalyst had a Tafel slope of –152 mV dec–1 and consumed an overpotential of 135 mV to generate a current density of 10 mA cm–2. Under the same operating conditions, these HER electrochemical kinetic parameters were found to be not remarkably far from those determined for commercial Pt/C (–10 mV vs. RHE, 0.88 mA cm–2, 108 mV dec–1 and 110 mV to yield a current density of 10 mA cm–2). In addition, the most active molecular electro-catalysts for H2 production from aqueous alkaline electrolytes were found to be comparable to the HER electrochemical kinetic parameters reported here for the GC–Zn2 electrocatalyst. Using 5000 cycles of repetitive cyclic voltammetry and 48 h of chronoamperometry measurements, the best electrocatalyst’s stability and long term durability were tested. It exhibited high stability for the HER catalytic activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans and D. Blake, Int. J. Energy Res., 32, 379 (2008); https://doi.org/10.1002/er.1372
- A. Zuttel, A. Remhof, R. Borgschulte and O. Friedrichs, Phil. Trans. R. Soc. A, 368, 3329 (2010); https://doi.org/10.1098/rsta.2010.0113
- I. Dincer and C. Acar, Int. J. Hydrogen Energy, 43, 8579 (2018); https://doi.org/10.1016/j.ijhydene.2018.03.120
- I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah and K.R. Ward, Energy Environ. Sci., 12, 463 (2019); https://doi.org/10.1039/C8EE01157E
- K.A. Vincent, A. Parkin and F.A. Armstrong, Chem. Rev., 107, 4366 (2007); https://doi.org/10.1021/cr050191u
- J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza and Y. Nicolet, Chem. Rev., 107, 4273 (2007); https://doi.org/10.1021/cr050195z
- M.E. Carroll, B.E. Barton, T.B. Rauchfuss and P.J. Carroll, J. Am. Chem. Soc., 134, 18843 (2012); https://doi.org/10.1021/ja309216v
- W. Lubitz, H. Ogata, O. Rudiger and E. Reijerse, Chem. Rev., 114, 4081 (2014); https://doi.org/10.1021/cr4005814
- C. Tard and C.J. Pickett, Chem. Rev., 109, 2245 (2009); https://doi.org/10.1021/cr800542q
- P.M. Vignais and B. Billoud, Chem. Rev., 107, 4206 (2007); https://doi.org/10.1021/cr050196r
- T. Goris, A.F. Wait, M. Saggu, J. Fritsch, N. Heidary, M. Stein, I. Zebger, F. Lendzian, F.A. Armstrong, B. Friedrich and O. Lenz, Nat. Chem. Biol., 7, 310 (2011);https://doi.org/10.1038/nchembio.555
- M. Gómez-Gallego and M.A. Sierra, Inorg. Chem. Front., 8, 3934 (2021); https://doi.org/10.1039/D1QI00505G
- T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave and V. Artero, Coord. Chem. Rev., 270-271, 127 (2014); https://doi.org/10.1016/j.ccr.2013.12.018
- D. Schilter, J.M. Camara, M.T. Huynh, S. Hammes-Schiffer and T.B. Rauchfuss, Chem. Rev., 116, 8693 (2016); https://doi.org/10.1021/acs.chemrev.6b00180
- A.M. Abudayyeh, O. Schott, H.L.C. Feltham, G.S. Hanan and S. Brooker, Inorg. Chem. Front., 8, 1015 (2021); https://doi.org/10.1039/D0QI01247E
- N. Zaman, T. Noor and N. Iqbal, RSC Adv., 11, 21904 (2021); https://doi.org/10.1039/D1RA02240G
- N.K. Oh, J. Seo, S. Lee, H. Kim, U. Kim, J. Lee, Y. Han and H. Park, Nat. Commun., 12, 4606 (2021); https://doi.org/10.1038/s41467-021-24829-8
- S. Wang, A. Lu and C. Zhong, Nano Converg., 8, 4 (2021); https://doi.org/10.1186/s40580-021-00254-x
- T. Kato, R. Tatematsu, K. Nakao, T. Inomata, T. Ozawa and H. Masuda, Inorg. Chem., 60, 7670 (2021); https://doi.org/10.1021/acs.inorgchem.0c03657
- F. Kamatsos, K. Bethanis and C.A. Mitsopoulou, Catalysts, 11, 401 (2021); https://doi.org/10.3390/catal11030401
- H. Lei, Y. Wang, Q. Zhang and R. Cao, J. Porphyr. Phthalocyan., 24, 1361 (2020); https://doi.org/10.1142/S1088424620500157
- Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang and Y. Yamauchi, Adv. Mater., 31, 1807134 (2019); https://doi.org/10.1002/adma.201807134
- P. Zhang, M. Wang, Y. Yang, T. Yao and L. Sun, Angew. Chem. Int. Ed., 53, 13803 (2014); https://doi.org/10.1002/anie.201408266
- H. Lei, H. Fang, Y. Han, W. Lai, X. Fu and R. Cao, ACS Catal., 5, 5145 (2015); https://doi.org/10.1021/acscatal.5b00666
- J.-P. Cao, T. Fang, L.-Z. Fu, L.-L. Zhou and S.-Z. Zhan, Int. J. Hydrogen Energy, 39, 13972 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.030
- L.-Z. Fu, T. Fang, L.-L. Zhou and S.-Z. Zhan, RSC Adv., 4, 53674 (2014); https://doi.org/10.1039/C4RA07211A
- J.-P. Cao, T. Fang, Z.-Q. Wang, Y.-W. Ren and S. Zhan, J. Mol. Catal. Chem., 391, 191 (2014); https://doi.org/10.1016/j.molcata.2014.04.034
- J. Wang, C. Li, Q. Zhou, W. Wang, Y. Hou, B. Zhang and X. Wang, Dalton Trans., 45, 5439 (2016); https://doi.org/10.1039/C5DT04628A
- D.M. Ekanayake, K.M. Kulesa, J. Singh, K.K. Kpogo, S. Mazumder, H. Bernhard Schlegel and C.N. Verani, Dalton Trans., 46, 16812 (2017); https://doi.org/10.1039/C7DT02711G
- Z.-J. Xin, S. Liu, C.-B. Li, Y.-J. Lei, D.-X. Xue, X.-W. Gao and H.-Y. Wang, Int. J. Hydrogen Energy, 42, 4202 (2017); https://doi.org/10.1016/j.ijhydene.2016.11.103
- K. Majee, J. Patel, B. Das and S.K. Padhi, Dalton Trans., 46, 14869 (2017); https://doi.org/10.1039/C7DT03153J
- T. Fang, H.-X. Lu, J.-X. Zhao, S.-Z. Zhan and Q.-Y. Lv, J. Mol. Catal. Chem., 396, 304 (2015); https://doi.org/10.1016/j.molcata.2014.10.008
- T. Fang, L.-L. Zhou, L.-Z. Fu, S.-Z. Zhan and Q.-Y. Lv, Polyhedron, 85, 355 (2015); https://doi.org/10.1016/j.poly.2014.08.030
- T. Straistari, R. Hardré, J. Fize, S. Shova, M. Giorgi, M. Réglier, V. Artero and M. Orio, Chem. Eur. J., 24, 8779 (2018); https://doi.org/10.1002/chem.201801155
- C.M. Klug, W.G. Dougherty, W.S. Kassel and E.S. Wiedner, Organometallics, 38, 1269 (2019); https://doi.org/10.1021/acs.organomet.8b00548
- S. Fukuzumi, Y.-M. Lee and W. Nam, Coord. Chem. Rev., 355, 54 (2018); https://doi.org/10.1016/j.ccr.2017.07.014
- W.T. Eckenhoff, Coord. Chem. Rev., 373, 295 (2018); https://doi.org/10.1016/j.ccr.2017.11.002
- A. Xie, J. Zhu and G.G. Luo, Int. J. Hydrogen Energy, 43, 2772 (2018); https://doi.org/10.1016/j.ijhydene.2017.12.120
- D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka, K. Ohkubo, Y. Shiota, K. Yoshizawa, S. Fukuzumi and T. Kojima, Inorg. Chem., 57, 7180 (2018); https://doi.org/10.1021/acs.inorgchem.8b00881
- J.M. Lei, Q.X. Peng, S.P. Luo, Y. Liu, S.Z. Zhan and C.L. Ni, Mol. Catal., 448, 10 (2018); https://doi.org/10.1016/j.mcat.2018.01.014
- G.G. Luo, H.L. Zhang, Y.W. Tao, Q.Y. Wu, D. Tian and Q. Zhang, Inorg. Chem. Front., 6, 343 (2019); https://doi.org/10.1039/C8QI01220B
- G. Parkin, Chem. Rev., 104, 699 (2004); https://doi.org/10.1021/cr0206263
- J. Perkinson, S. Brodie, K. Yoon, K. Mosny, P.J. Carroll, T.V. Morgan and S.J.N. Burgmayer, Inorg. Chem., 30, 719 (1991); https://doi.org/10.1021/ic00004a023
- D.A. Baldwin, A.B.P. Lever and R.V. Parish, Inorg. Chem., 8, 107 (1969); https://doi.org/10.1021/ic50071a026
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons: New York, p. 256 (1986).
- M.A. Amin, N. El-Bagoury, M.H.H. Mahmoud, M.M. Hessien, S.S.A. El-Rehim, J. Wysocka and J. Ryl, RSC Adv., 7, 3635 (2017); https://doi.org/10.1039/C6RA25384A
- T.N.J.I. Edison, R. Atchudan, N. Karthik and Y.R. Lee, J. Hydrogen Energy, 42, 14390 (2017); https://doi.org/10.1016/j.ijhydene.2017.04.228
- H. Wang, Y. Cao, G. Zou, Q. Yi, J. Guo, L. Gao, ACS Appl. Mater. Interfaces, 9, 60 (2017); https://doi.org/10.1021/acsami.6b14393
- M.A. Amin, E.M. Ahmed, N.Y. Mostafa, M.M. Alotibi, G. Darabdhara, M.R. Das, J. Wysocka, J. Ryl and S.S. Abd El-Rehim, J. Ryl and S.S. Abd El-Rehim, ACS Appl. Mater. Interfaces, 8, 23655 (2016); https://doi.org/10.1021/acsami.6b05630
- M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, F. Kandemirli, M. Saracoglu, S. Szunerits and R. Boukherroub, Int. J. Hydrogen Energy, 41, 6326 (2016); https://doi.org/10.1016/j.ijhydene.2016.02.107
- G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits and R. Boukherroub, J. Mater. Chem. A Mater. Energy Sustain., 3, 20254 (2015); https://doi.org/10.1039/C5TA05730B
- J. Tian, Q. Liu, A.M. Asiri and X. Sun, J. Am. Chem. Soc., 136, 7587 (2014); https://doi.org/10.1021/ja503372r
- M. Zeng and Y. Li, J. Mater. Chem. A Mater. Energy Sustain., 3, 14942 (2015); https://doi.org/10.1039/C5TA02974K
- A.P. Murthy, J. Theerthagiri, J. Madhavan and K. Murugan, Phys. Chem. Chem. Phys., 19, 1988 (2017); https://doi.org/10.1039/C6CP07416B
- T. Shinagawa, A.T. Garcia-Esparza and K. Takanabe, Sci. Rep., 5, 13801 (2015); https://doi.org/10.1038/srep13801
- J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz and H.A. Gasteiger, Energy Environ. Sci., 7, 2255 (2014); https://doi.org/10.1039/C4EE00440J
- H. Over, Chem. Rev., 112, 3356 (2012); https://doi.org/10.1021/cr200247n
- N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu and H.M. Chen, Chem. Soc. Rev., 46, 337 (2017); https://doi.org/10.1039/C6CS00328A
- N. Liu, Y. Guo, X. Yang, H. Lin, L. Yang, Z. Shi, Z. Zhong, S. Wang, Y. Tang and Q. Gao, ACS Appl. Mater. Interfaces, 7, 23741 (2015); https://doi.org/10.1021/acsami.5b08103
- J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, J. Am. Chem. Soc., 135, 17881 (2013); https://doi.org/10.1021/ja408329q
- T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo, Y.Y. Chen, S.F. Jin, F. Gao, L.J. Wan and J.S. Hu, J. Am. Chem. Soc., 139, 8320 (2017); https://doi.org/10.1021/jacs.7b03507
- J. Kibsgaard and T.F. Jaramillo, Angew. Chem. Int. Ed., 53, 14433 (2014); https://doi.org/10.1002/anie.201408222
- Y.-R. Liu, X. Shang, W.-K. Gao, B. Dong, J.-Q. Chi, X. Li, K.-L. Yan, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, Appl. Surf. Sci., 412, 138 (2017); https://doi.org/10.1016/j.apsusc.2017.03.245
References
J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans and D. Blake, Int. J. Energy Res., 32, 379 (2008); https://doi.org/10.1002/er.1372
A. Zuttel, A. Remhof, R. Borgschulte and O. Friedrichs, Phil. Trans. R. Soc. A, 368, 3329 (2010); https://doi.org/10.1098/rsta.2010.0113
I. Dincer and C. Acar, Int. J. Hydrogen Energy, 43, 8579 (2018); https://doi.org/10.1016/j.ijhydene.2018.03.120
I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah and K.R. Ward, Energy Environ. Sci., 12, 463 (2019); https://doi.org/10.1039/C8EE01157E
K.A. Vincent, A. Parkin and F.A. Armstrong, Chem. Rev., 107, 4366 (2007); https://doi.org/10.1021/cr050191u
J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza and Y. Nicolet, Chem. Rev., 107, 4273 (2007); https://doi.org/10.1021/cr050195z
M.E. Carroll, B.E. Barton, T.B. Rauchfuss and P.J. Carroll, J. Am. Chem. Soc., 134, 18843 (2012); https://doi.org/10.1021/ja309216v
W. Lubitz, H. Ogata, O. Rudiger and E. Reijerse, Chem. Rev., 114, 4081 (2014); https://doi.org/10.1021/cr4005814
C. Tard and C.J. Pickett, Chem. Rev., 109, 2245 (2009); https://doi.org/10.1021/cr800542q
P.M. Vignais and B. Billoud, Chem. Rev., 107, 4206 (2007); https://doi.org/10.1021/cr050196r
T. Goris, A.F. Wait, M. Saggu, J. Fritsch, N. Heidary, M. Stein, I. Zebger, F. Lendzian, F.A. Armstrong, B. Friedrich and O. Lenz, Nat. Chem. Biol., 7, 310 (2011);https://doi.org/10.1038/nchembio.555
M. Gómez-Gallego and M.A. Sierra, Inorg. Chem. Front., 8, 3934 (2021); https://doi.org/10.1039/D1QI00505G
T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave and V. Artero, Coord. Chem. Rev., 270-271, 127 (2014); https://doi.org/10.1016/j.ccr.2013.12.018
D. Schilter, J.M. Camara, M.T. Huynh, S. Hammes-Schiffer and T.B. Rauchfuss, Chem. Rev., 116, 8693 (2016); https://doi.org/10.1021/acs.chemrev.6b00180
A.M. Abudayyeh, O. Schott, H.L.C. Feltham, G.S. Hanan and S. Brooker, Inorg. Chem. Front., 8, 1015 (2021); https://doi.org/10.1039/D0QI01247E
N. Zaman, T. Noor and N. Iqbal, RSC Adv., 11, 21904 (2021); https://doi.org/10.1039/D1RA02240G
N.K. Oh, J. Seo, S. Lee, H. Kim, U. Kim, J. Lee, Y. Han and H. Park, Nat. Commun., 12, 4606 (2021); https://doi.org/10.1038/s41467-021-24829-8
S. Wang, A. Lu and C. Zhong, Nano Converg., 8, 4 (2021); https://doi.org/10.1186/s40580-021-00254-x
T. Kato, R. Tatematsu, K. Nakao, T. Inomata, T. Ozawa and H. Masuda, Inorg. Chem., 60, 7670 (2021); https://doi.org/10.1021/acs.inorgchem.0c03657
F. Kamatsos, K. Bethanis and C.A. Mitsopoulou, Catalysts, 11, 401 (2021); https://doi.org/10.3390/catal11030401
H. Lei, Y. Wang, Q. Zhang and R. Cao, J. Porphyr. Phthalocyan., 24, 1361 (2020); https://doi.org/10.1142/S1088424620500157
Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang and Y. Yamauchi, Adv. Mater., 31, 1807134 (2019); https://doi.org/10.1002/adma.201807134
P. Zhang, M. Wang, Y. Yang, T. Yao and L. Sun, Angew. Chem. Int. Ed., 53, 13803 (2014); https://doi.org/10.1002/anie.201408266
H. Lei, H. Fang, Y. Han, W. Lai, X. Fu and R. Cao, ACS Catal., 5, 5145 (2015); https://doi.org/10.1021/acscatal.5b00666
J.-P. Cao, T. Fang, L.-Z. Fu, L.-L. Zhou and S.-Z. Zhan, Int. J. Hydrogen Energy, 39, 13972 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.030
L.-Z. Fu, T. Fang, L.-L. Zhou and S.-Z. Zhan, RSC Adv., 4, 53674 (2014); https://doi.org/10.1039/C4RA07211A
J.-P. Cao, T. Fang, Z.-Q. Wang, Y.-W. Ren and S. Zhan, J. Mol. Catal. Chem., 391, 191 (2014); https://doi.org/10.1016/j.molcata.2014.04.034
J. Wang, C. Li, Q. Zhou, W. Wang, Y. Hou, B. Zhang and X. Wang, Dalton Trans., 45, 5439 (2016); https://doi.org/10.1039/C5DT04628A
D.M. Ekanayake, K.M. Kulesa, J. Singh, K.K. Kpogo, S. Mazumder, H. Bernhard Schlegel and C.N. Verani, Dalton Trans., 46, 16812 (2017); https://doi.org/10.1039/C7DT02711G
Z.-J. Xin, S. Liu, C.-B. Li, Y.-J. Lei, D.-X. Xue, X.-W. Gao and H.-Y. Wang, Int. J. Hydrogen Energy, 42, 4202 (2017); https://doi.org/10.1016/j.ijhydene.2016.11.103
K. Majee, J. Patel, B. Das and S.K. Padhi, Dalton Trans., 46, 14869 (2017); https://doi.org/10.1039/C7DT03153J
T. Fang, H.-X. Lu, J.-X. Zhao, S.-Z. Zhan and Q.-Y. Lv, J. Mol. Catal. Chem., 396, 304 (2015); https://doi.org/10.1016/j.molcata.2014.10.008
T. Fang, L.-L. Zhou, L.-Z. Fu, S.-Z. Zhan and Q.-Y. Lv, Polyhedron, 85, 355 (2015); https://doi.org/10.1016/j.poly.2014.08.030
T. Straistari, R. Hardré, J. Fize, S. Shova, M. Giorgi, M. Réglier, V. Artero and M. Orio, Chem. Eur. J., 24, 8779 (2018); https://doi.org/10.1002/chem.201801155
C.M. Klug, W.G. Dougherty, W.S. Kassel and E.S. Wiedner, Organometallics, 38, 1269 (2019); https://doi.org/10.1021/acs.organomet.8b00548
S. Fukuzumi, Y.-M. Lee and W. Nam, Coord. Chem. Rev., 355, 54 (2018); https://doi.org/10.1016/j.ccr.2017.07.014
W.T. Eckenhoff, Coord. Chem. Rev., 373, 295 (2018); https://doi.org/10.1016/j.ccr.2017.11.002
A. Xie, J. Zhu and G.G. Luo, Int. J. Hydrogen Energy, 43, 2772 (2018); https://doi.org/10.1016/j.ijhydene.2017.12.120
D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka, K. Ohkubo, Y. Shiota, K. Yoshizawa, S. Fukuzumi and T. Kojima, Inorg. Chem., 57, 7180 (2018); https://doi.org/10.1021/acs.inorgchem.8b00881
J.M. Lei, Q.X. Peng, S.P. Luo, Y. Liu, S.Z. Zhan and C.L. Ni, Mol. Catal., 448, 10 (2018); https://doi.org/10.1016/j.mcat.2018.01.014
G.G. Luo, H.L. Zhang, Y.W. Tao, Q.Y. Wu, D. Tian and Q. Zhang, Inorg. Chem. Front., 6, 343 (2019); https://doi.org/10.1039/C8QI01220B
G. Parkin, Chem. Rev., 104, 699 (2004); https://doi.org/10.1021/cr0206263
J. Perkinson, S. Brodie, K. Yoon, K. Mosny, P.J. Carroll, T.V. Morgan and S.J.N. Burgmayer, Inorg. Chem., 30, 719 (1991); https://doi.org/10.1021/ic00004a023
D.A. Baldwin, A.B.P. Lever and R.V. Parish, Inorg. Chem., 8, 107 (1969); https://doi.org/10.1021/ic50071a026
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons: New York, p. 256 (1986).
M.A. Amin, N. El-Bagoury, M.H.H. Mahmoud, M.M. Hessien, S.S.A. El-Rehim, J. Wysocka and J. Ryl, RSC Adv., 7, 3635 (2017); https://doi.org/10.1039/C6RA25384A
T.N.J.I. Edison, R. Atchudan, N. Karthik and Y.R. Lee, J. Hydrogen Energy, 42, 14390 (2017); https://doi.org/10.1016/j.ijhydene.2017.04.228
H. Wang, Y. Cao, G. Zou, Q. Yi, J. Guo, L. Gao, ACS Appl. Mater. Interfaces, 9, 60 (2017); https://doi.org/10.1021/acsami.6b14393
M.A. Amin, E.M. Ahmed, N.Y. Mostafa, M.M. Alotibi, G. Darabdhara, M.R. Das, J. Wysocka, J. Ryl and S.S. Abd El-Rehim, J. Ryl and S.S. Abd El-Rehim, ACS Appl. Mater. Interfaces, 8, 23655 (2016); https://doi.org/10.1021/acsami.6b05630
M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, F. Kandemirli, M. Saracoglu, S. Szunerits and R. Boukherroub, Int. J. Hydrogen Energy, 41, 6326 (2016); https://doi.org/10.1016/j.ijhydene.2016.02.107
G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits and R. Boukherroub, J. Mater. Chem. A Mater. Energy Sustain., 3, 20254 (2015); https://doi.org/10.1039/C5TA05730B
J. Tian, Q. Liu, A.M. Asiri and X. Sun, J. Am. Chem. Soc., 136, 7587 (2014); https://doi.org/10.1021/ja503372r
M. Zeng and Y. Li, J. Mater. Chem. A Mater. Energy Sustain., 3, 14942 (2015); https://doi.org/10.1039/C5TA02974K
A.P. Murthy, J. Theerthagiri, J. Madhavan and K. Murugan, Phys. Chem. Chem. Phys., 19, 1988 (2017); https://doi.org/10.1039/C6CP07416B
T. Shinagawa, A.T. Garcia-Esparza and K. Takanabe, Sci. Rep., 5, 13801 (2015); https://doi.org/10.1038/srep13801
J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz and H.A. Gasteiger, Energy Environ. Sci., 7, 2255 (2014); https://doi.org/10.1039/C4EE00440J
H. Over, Chem. Rev., 112, 3356 (2012); https://doi.org/10.1021/cr200247n
N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu and H.M. Chen, Chem. Soc. Rev., 46, 337 (2017); https://doi.org/10.1039/C6CS00328A
N. Liu, Y. Guo, X. Yang, H. Lin, L. Yang, Z. Shi, Z. Zhong, S. Wang, Y. Tang and Q. Gao, ACS Appl. Mater. Interfaces, 7, 23741 (2015); https://doi.org/10.1021/acsami.5b08103
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, J. Am. Chem. Soc., 135, 17881 (2013); https://doi.org/10.1021/ja408329q
T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo, Y.Y. Chen, S.F. Jin, F. Gao, L.J. Wan and J.S. Hu, J. Am. Chem. Soc., 139, 8320 (2017); https://doi.org/10.1021/jacs.7b03507
J. Kibsgaard and T.F. Jaramillo, Angew. Chem. Int. Ed., 53, 14433 (2014); https://doi.org/10.1002/anie.201408222
Y.-R. Liu, X. Shang, W.-K. Gao, B. Dong, J.-Q. Chi, X. Li, K.-L. Yan, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, Appl. Surf. Sci., 412, 138 (2017); https://doi.org/10.1016/j.apsusc.2017.03.245