Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic and Mechanism of Mn(II) Catalytic Oxidation of L-Proline by Cerium(IV) in Acidic Medium by Spectrophotometry Method
Corresponding Author(s) : Gajanand Sahu
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
The rate of reaction of L-proline with Ce(IV) acidic medium has been kinetically studied in presence of Mn(II) as catalyst using a spectrophotometric method. The reactions have been performed at temperatures range from 298 K to 318 K in interval of 10 min. In the case of Ce(IV), this reaction would be a first order reaction. The results exhibits first order each in Ce(IV) and metal ion Mn(II) and positive fractional order with respect to [L-proline]. This would have a first order reaction between the Ce(IV) and L-proline in the presence and absence SDS, CTAB and KCl. The rate constant decreases with increasing the concentration of [HSO4−] and [H+] ion. The thermodynamical parameter values such as ΔH#, ΔG# and ΔS# increased with increasing temperature so that the rate equation derived for this mechanism could explain all observed results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Faller, A.W. Rutherford and R.J. Debus, Biochemistry, 41, 12914 (2002); https://doi.org/10.1021/bi026588z
- C. Giulivi and K.J.A. Davies, J. Biol. Chem., 276, 24129 (2001); https://doi.org/10.1074/jbc.M010697200
- C. Song, L.Chen and J. Shan, Res. Lett. Inorg. Chem., 2008, 786857 (2008); https://doi.org/10.1155/2008/786857
- I.B. Anweting, J.F. Iyun and S.O. Idris, Adv. Appl. Sci. Res., 3, 3401 (2012).
- S. Mathur, M.B. Yadav and V. Devra, Int. J. Chem. Sci., 13, 641 (2015).
- R.V. Nadh and M. Sireesha, Bulg. Chem. Commun., 47, 13 (2015).
- J.C. Fanzo, J. Nutr., 147, 1 (2017); https://doi.org/10.3945/jn.116.241703
- R. Dunn and C. Dolianitis, J. Aust. Dermatol., 49, 237 (2008); https://doi.org/10.1111/j.1440-0960.2008.00485.x
- R.H. Dunstan, D.L. Sparkes, M.M. Macdonald, X.J. De Jonge, B.J. Dascombe, J. Gottfries, C.-G. Gottfries and T.K. Roberts, J. Nutr., 16, 19 (2017); https://doi.org/10.1186/s12937-017-0240-y
- L. Gracia-Marco, S. Bel-Serrat, M. Cuenca-Garcia, M. Gonzalez-Gross, R. Pedrero-Chamizo, Y. Manios, A. Marcos, D. Molnar, K. Widhalm, A. Polito, J. Vanhelst, M. Hagströmer, M. Sjöström, A. Kafatos, S. de Henauw, Á. Gutierrez, M.J. Castillo and L.A. Moreno, Amino Acids, 49, 1041 (2017); https://doi.org/10.1007/s00726-017-2393-6
- J.B. Hagan, R.L. Wasserman, J.S. Baggish, M.O. Spycher, M. Berger, V. Shashi, E. Lohrmann and K.E. Sullivan, Expert Rev. Clin. Immunol., 8, 169 (2012); https://doi.org/10.1586/eci.11.97
- J. Jamdar, B. Rao, S. Netke, M.W. Roomi, V. Ivanov, A. Niedzwiecki and M. Rath, J. Altern. Complement. Med., 10, 915 (2004).
- E. Valero, R. Varón and F. Garcia-Carmona, Arch. Biochem. Biophys., 416, 218 (2003); https://doi.org/10.1016/s0003-9861(03)00288-1
- R.T. Mahesh, M.B. Bellakki and S.T. Nandibewoor, J. Chem. Res., 2005, 13 (2005); https://doi.org/10.3184/0308234053431086
- H.-W. Sun, H.-M. Shi, S.-G. Shen, W.-J. Kang and Z.-F. Guo, J. Chin. Chem., 26, 583 (2008); https://doi.org/10.1002/cjoc.200890110
- R. Ito, N. Umezawa and T. Higuchi, J. Am. Chem. Soc., 127, 834 (2005); https://doi.org/10.1021/ja045603f
- M.I. Hiremath and S.T. Nandibewoor, J. Russ. Phys. Chem., 80, 1029 (2006); https://doi.org/10.1134/S0036024406070053
- K. Sharanabasamma, M.A. Angadi, M.S. Salunke and S.M. Tuwar, Ind. Eng. Chem. Res., 48, 10381 (2009); https://doi.org/10.1021/ie901049p
- G. Sahu and S. Ghosh, Int. J. Recent Sci. Res., 12, 42412 (2021).
- E.O. Odebunmi, A.S. Ogunlaja and S.O. Owalude, J. Chil. Chem. Soc., 55, 293 (2010); https://doi.org/10.4067/S0717-97072010000300002
- J. Singh, R. Maliky and O. Singh, Int. J. Chem. Sci., 12, 445 (2014).
- T.M. Braun, J. John, N. Jayaraju, D. Josell and T.P. Moffat, J. Electrochem. Soc., 169, 012502 (2022); https://doi.org/10.1149/1945-7111/ac4845
- G. Sahu and S. Ghosh, J. Int. Res. Pure Appl. Chem., 22, 51 (2021); https://doi.org/10.9734/irjpac/2021/v22i430403
- R.K. Patil, S.A. Chimatadar and S.T. Nandibewoor, Transition Met. Chem., 33, 625 (2008); https://doi.org/10.1007/s11243-008-9089-4
- A. McAuley and C.H. Brubaker, J. Chem. Soc., 21, 960 (1966); https://doi.org/10.1039/J19660000960
- W.Y. Song, Z. H. Li and A, Z. Wang, Chem. J. Chin. Univ., 18, 1842 (1997)
References
P. Faller, A.W. Rutherford and R.J. Debus, Biochemistry, 41, 12914 (2002); https://doi.org/10.1021/bi026588z
C. Giulivi and K.J.A. Davies, J. Biol. Chem., 276, 24129 (2001); https://doi.org/10.1074/jbc.M010697200
C. Song, L.Chen and J. Shan, Res. Lett. Inorg. Chem., 2008, 786857 (2008); https://doi.org/10.1155/2008/786857
I.B. Anweting, J.F. Iyun and S.O. Idris, Adv. Appl. Sci. Res., 3, 3401 (2012).
S. Mathur, M.B. Yadav and V. Devra, Int. J. Chem. Sci., 13, 641 (2015).
R.V. Nadh and M. Sireesha, Bulg. Chem. Commun., 47, 13 (2015).
J.C. Fanzo, J. Nutr., 147, 1 (2017); https://doi.org/10.3945/jn.116.241703
R. Dunn and C. Dolianitis, J. Aust. Dermatol., 49, 237 (2008); https://doi.org/10.1111/j.1440-0960.2008.00485.x
R.H. Dunstan, D.L. Sparkes, M.M. Macdonald, X.J. De Jonge, B.J. Dascombe, J. Gottfries, C.-G. Gottfries and T.K. Roberts, J. Nutr., 16, 19 (2017); https://doi.org/10.1186/s12937-017-0240-y
L. Gracia-Marco, S. Bel-Serrat, M. Cuenca-Garcia, M. Gonzalez-Gross, R. Pedrero-Chamizo, Y. Manios, A. Marcos, D. Molnar, K. Widhalm, A. Polito, J. Vanhelst, M. Hagströmer, M. Sjöström, A. Kafatos, S. de Henauw, Á. Gutierrez, M.J. Castillo and L.A. Moreno, Amino Acids, 49, 1041 (2017); https://doi.org/10.1007/s00726-017-2393-6
J.B. Hagan, R.L. Wasserman, J.S. Baggish, M.O. Spycher, M. Berger, V. Shashi, E. Lohrmann and K.E. Sullivan, Expert Rev. Clin. Immunol., 8, 169 (2012); https://doi.org/10.1586/eci.11.97
J. Jamdar, B. Rao, S. Netke, M.W. Roomi, V. Ivanov, A. Niedzwiecki and M. Rath, J. Altern. Complement. Med., 10, 915 (2004).
E. Valero, R. Varón and F. Garcia-Carmona, Arch. Biochem. Biophys., 416, 218 (2003); https://doi.org/10.1016/s0003-9861(03)00288-1
R.T. Mahesh, M.B. Bellakki and S.T. Nandibewoor, J. Chem. Res., 2005, 13 (2005); https://doi.org/10.3184/0308234053431086
H.-W. Sun, H.-M. Shi, S.-G. Shen, W.-J. Kang and Z.-F. Guo, J. Chin. Chem., 26, 583 (2008); https://doi.org/10.1002/cjoc.200890110
R. Ito, N. Umezawa and T. Higuchi, J. Am. Chem. Soc., 127, 834 (2005); https://doi.org/10.1021/ja045603f
M.I. Hiremath and S.T. Nandibewoor, J. Russ. Phys. Chem., 80, 1029 (2006); https://doi.org/10.1134/S0036024406070053
K. Sharanabasamma, M.A. Angadi, M.S. Salunke and S.M. Tuwar, Ind. Eng. Chem. Res., 48, 10381 (2009); https://doi.org/10.1021/ie901049p
G. Sahu and S. Ghosh, Int. J. Recent Sci. Res., 12, 42412 (2021).
E.O. Odebunmi, A.S. Ogunlaja and S.O. Owalude, J. Chil. Chem. Soc., 55, 293 (2010); https://doi.org/10.4067/S0717-97072010000300002
J. Singh, R. Maliky and O. Singh, Int. J. Chem. Sci., 12, 445 (2014).
T.M. Braun, J. John, N. Jayaraju, D. Josell and T.P. Moffat, J. Electrochem. Soc., 169, 012502 (2022); https://doi.org/10.1149/1945-7111/ac4845
G. Sahu and S. Ghosh, J. Int. Res. Pure Appl. Chem., 22, 51 (2021); https://doi.org/10.9734/irjpac/2021/v22i430403
R.K. Patil, S.A. Chimatadar and S.T. Nandibewoor, Transition Met. Chem., 33, 625 (2008); https://doi.org/10.1007/s11243-008-9089-4
A. McAuley and C.H. Brubaker, J. Chem. Soc., 21, 960 (1966); https://doi.org/10.1039/J19660000960
W.Y. Song, Z. H. Li and A, Z. Wang, Chem. J. Chin. Univ., 18, 1842 (1997)