Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Super Material Borophene: Next Generation of Graphene: A Review
Corresponding Author(s) : Swasti Saxena
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
In this review article, we discussed about how the new wonder material borophene is stronger and more flexible than graphene. It’s an excellent conductor of both electricity and heat, as well as a one-of-a-kind superconductor. The orientation of the material and the arrangement of vacancies affect these properties. Borophene is also rather light and reactive. Graphene is the wonderful material not long ago. Tubes, balls and other strange shapes can be formed from a super-strong, atom-thick sheet of carbon. The idea of a new age of graphene-based computer processing and a rich graphene chip industry has been highlighted by materials scientists. However, the remarkable qualities of borophene have lately astonished everyone. It has optimum strength and in-plane flexibility. In some combinations, they can be stronger and more flexible than graphene. Borophene’s high theoretical specific capacities, electrical conductivity and ion transport capabilities make it a promising anode material for batteries. Borophene has a wide range of possible applications due to its unusual physical and chemical features. It is capable of accelerating the decomposition of hydrogen and oxygen, is light weight and can acts as a reactant. We describe the work on borophene in this review, with a focus on current developments. The phases of borophene are first introduced through experimental synthesis and theoretical predictions. The physical and chemical qualities are then summarized, including mechanical, thermal, electrical, optical and superconducting properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hempel, D. Nezich, J. Kong and M. Hofmann, Nano Lett., 12, 5714 (2012); https://doi.org/10.1021/nl302959a
- M.I. Katsnelson, Mater. Today, 10, 20 (2007); https://doi.org/10.1016/S1369-7021(06)71788-6
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- D. Li and R.B. Kaner, Science, 320, 1170 (2008); https://doi.org/10.1126/science.1158180
- A.K. Geim, Science, 324, 1530 (2009); https://doi.org/10.1126/science.1158877
- T. Fan, Z. Xie, W. Huang, Z. Li and H. Zhang, Nanotechnology, 30, 114002 (2019); https://doi.org/10.1088/1361-6528/aafc0f
- Z. Xie, Y.P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu and H. Zhang, Solar RRL, 4, 1900400 (2020); https://doi.org/10.1002/solr.201900400
- Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang and Z. Peng, Mater. Horiz., 4, 997 (2017); https://doi.org/10.1039/C7MH00543A
- L. Shahriary and A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 57 (2014).
- A.J. Mannix, Z. Zhang, N.P. Guisinger, B.I. Yakobson and M.C. Hersam, Nat. Nanotechnol., 13, 444 (2018); https://doi.org/10.1038/s41565-018-0157-4
- Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan and H. Zhang, Adv. Funct. Mater., 28, 1705833 (2018); https://doi.org/10.1002/adfm.201705833
- Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y.P. Feng and J.-C. Zheng, Front. Phys., 14, 33403 (2019); https://doi.org/10.1007/s11467-019-0884-5
- Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing, L. Yu, R. Wang, M. Qiu, Y. Zhang, Y. Zhao, X. Yan and H. Zhang, Adv. Sci., 7, 1902236 (2020); https://doi.org/10.1002/advs.201902236
- P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B.N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang and Q. Bao, ACS Appl. Mater. Interfaces, 9, 12759 (2017); https://doi.org/10.1021/acsami.7b01709
- J. Kwon and J. Kim, Mater. Express, 8, 299 (2018); https://doi.org/10.1166/mex.2018.1430
- Z. Zhang, E.S. Penev and B.I. Yakobson, Chem. Soc. Rev., 46, 6746 (2017); https://doi.org/10.1039/C7CS00261K
- C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li and H. Zhang, ACS Photonics, 5, 621 (2018); https://doi.org/10.1021/acsphotonics.7b01211
- J. Chen, T. Fan, Z. Xie, Q. Zeng, P. Xue, T. Zheng, Y. Chen, X. Luo and H. Zhang, Biomaterials, 237, 119827 (2020); https://doi.org/10.1016/j.biomaterials.2020.119827
- S.-Y. Xie, Y. Wang and X.-B. Li, Adv. Mater., 31, 1900392 (2019); https://doi.org/10.1002/adma.201900392
- W. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Liu and M. Miao, J. Phys. Chem. Lett., 8, 2647 (2017); https://doi.org/10.1021/acs.jpclett.7b00891
- J. Yu, M. Zhou, M. Yang, Q. Yang, Z. Zhang and Y. Zhang, ACS Appl. Energy Mater., 3, 11699 (2020); https://doi.org/10.1021/acsaem.0c01808
- D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Conden. Matter Phys., 2012, 501686 (2011); https://doi.org/10.5402/2012/501686
- Y. Zhao, S. Zeng and J. Ni, Phys. Rev. B, 93, 014502 (2016); https://doi.org/10.1103/PhysRevB.93.014502
- S.H. Mir, S. Chakraborty, P.C. Jha, J. Wärnå, H. Soni, P.K. Jha and R. Ahuja, Appl. Phys. Lett., 109, 053903 (2016); https://doi.org/10.1063/1.4960102
- X. Tan, H.A. Tahini and S.C. Smith, ACS Appl. Mater. Interfaces, 9, 19825 (2017); https://doi.org/10.1021/acsami.7b03676
- Q. Sun, Z. Li, D.J. Searles, Y. Chen, G.M. Lu and A. Du, J. Am. Chem. Soc., 135, 8246 (2013); https://doi.org/10.1021/ja400243r
- Y.W. Chen-Yang, H.C. Yang, G.J. Li and Y.K. Li, J. Polym. Res., 11, 275 (2005); https://doi.org/10.1007/s10965-005-3982-8
- R. Peköz, M. Konuk, M.E. Kilic and E. Durgun, ACS Omega, 3, 1815 (2018); https://doi.org/10.1021/acsomega.7b01730
- D. Li, J. He, G. Ding, Q.Q. Tang, Y. Ying, J. He, C. Zhong, Y. Liu, C. Feng, Q. Sun, H. Zhou, P. Zhou and G. Zhang, Adv. Funct. Mater., 28, 1801685 (2018); https://doi.org/10.1002/adfm.201801685
- A.N. Kolmogorov and S. Curtarolo, Phys. Rev. B Condens. Matter Mater. Phys., 73, 180501 (2006); https://doi.org/10.1103/PhysRevB.73.180501
- S. Xu, Y. Zhao, J. Liao, X. Yang and H. Xu, Nano Res., 9, 2616 (2016); https://doi.org/10.1007/s12274-016-1148-0
- D. Cohen-Tanugi and J.C. Grossman, Nano Lett., 12, 3602 (2012); https://doi.org/10.1021/nl3012853
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano, 8, 5154 (2014); https://doi.org/10.1021/nn501204t
- S. Chevalier, G. Caboche, K. Przybylski, and T. Brylewski, J. Appl. Electrochem., 39, 529 (2009); https://doi.org/10.1007/s10800-008-9726-9
- A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam and N.P. Guisinger, Science, 350, 1513 (2015); https://doi.org/10.1126/science.aad1080
- G. Sachdeva, S. Kaur, R. Pandey and S.P. Karna, Computation, 9, 101 (2021); https://doi.org/10.3390/computation9090101
- A. Rastgou, H. Soleymanabadi and A. Bodaghi, Microelectron. Eng., 169, 9 (2017); https://doi.org/10.1016/j.mee.2016.11.012
- A. Lherbier, A.R. Botello-Méndez and J.-C. Charlier, 2D Materials, 3, 045006 (2016); https://doi.org/10.1088/2053-1583/3/4/045006
- H. Zhong, K. Huang, G. Yu and S. Yuan, Phys. Rev. B, 98, 054104 (2018); https://doi.org/10.1103/PhysRevB.98.054104
- B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang and H. Zhu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 3592 (2016); https://doi.org/10.1039/C6TC00115G
- S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung and J. Nah, ACS Nano, 8, 2766 (2014); https://doi.org/10.1021/nn406481k
- V. Bhavanasi, V. Kumar, K. Parida, J. Wang and P. S. Lee, ACS Appl. Mater. Interfaces, 8, 521 (2016); https://doi.org/10.1021/acsami.5b09502
- A. Yar and A. Ilyas, J. Phys. Soc. Jpn., 89, 124705 (2020); https://doi.org/10.7566/JPSJ.89.124705
- T.P. Cysne, F.S.M. Guimarães, L.M. Canonico, T.G. Rappoport and R.B. Muniz, Phys. Rev. B, 104, (2021); https://doi.org/10.1103/PhysRevB.104.165403
- E.S. Penev, A. Kutana and B.I. Yakobson, Nano Lett., 16, 2522 (2016); https://doi.org/10.1021/acs.nanolett.6b00070
- P. Gannon, C.T. Tripp, A.K. Knospe, C.V.Ramana, M. Deibert, R.J. Smith, V.I. Gorokhovsky, V. Shutthanandan and D. Gelles, Surf. Coat. Technol., 188-189, 55 (2004); https://doi.org/10.1016/j.surfcoat.2004.08.067
- J.H. Liao, Y.C. Zhao, Y.J. Zhao, H. Xu and X.B. Yang, Phys. Chem. Chem. Phys., 19, 29237 (2017); https://doi.org/10.1039/C7CP06180C
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233
- J. Nong, X. Xiao, F. Feng, B. Zhao, C. Min, X. Yuan and M. Somekh, Optics Exp., 29, 27750 (2021); https://doi.org/10.1364/OE.432844
- H. Gonzalez-Herrero, J.M. Gomez-Rodriguez, P. Mallet, M. Moaied, J.J. Palacios, C. Salgado, M.M. Ugeda, J.-Y. Veuillen, F. Yndurain and I. Brihuega, Science, 352, 437 (2016); https://doi.org/10.1126/science.aad8038
- M. Ezawa, Phys. Rev. B, 96, 035425 (2017); https://doi.org/10.1103/PhysRevB.96.035425
- Y.-Q. Wang, T. Morimoto and J.E. Moore, Phys. Rev. B, 101, 174419 (2020); https://doi.org/10.1103/PhysRevB.101.174419
- G. Chang, S.-Y. Xu, B.J. Wieder, D.S. Sanchez, S.-M. Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin and M.Z. Hasan, Phys. Rev. Lett., 119, 206401 (2017); https://doi.org/10.1103/PhysRevLett.119.206401
- S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2369, 020008 (2021); https://doi.org/10.1063/5.0061174
- S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2220, 140043 (2020), https://doi.org/10.1063/5.0001188
- S. Sheng, J.B. Wu, X. Cong, Q. Zhong, W. Li, W. Hu, J. Gou, P. Cheng, P.-H. Tan, L. Chen and K. Wu, ACS Nano, 13, 4133 (2019); https://doi.org/10.1021/acsnano.8b08909
- N.T. Tien, T.Q. Trung, Y.G. Seoul, D.I. Kim and N.-E. Lee, ACS Nano, 5, 7069 (2011); https://doi.org/10.1021/nn2017827
- L.M. Canonico, T.P. Cysne, A. Molina-Sanchez, R.B. Muniz and T.G. Rappoport, Phys. Rev. B, 101, (2020); https://doi.org/10.1103/PhysRevB.101.161409
- S.I. Vishkayi and M.B. Tagani, Phys. Chem. Chem. Phys., 20, 10493 (2018); https://doi.org/10.1039/C7CP08671G
- I. Boustani, A. Quandt, E. Hernandez and A. Rubio, J. Chem. Phys., 110, 3176 (1999); https://doi.org/10.1063/1.477976
- M. Evans, J. Joannopoulos and S. Pantelides, Phys. Rev. B Condens. Matter Mater. Phys., 72, 045434 (2005); https://doi.org/10.1103/PhysRevB.72.045434
- I. Boustani, A. Rubio and J.A. Alonso, Surf. Sci., 370, 355 (1997); https://doi.org/10.1016/S0039-6028(96)00969-7
- B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng and I. Matsuda, Phys. Rev. Lett., 118, 096401 (2017); https://doi.org/10.1103/PhysRevLett.118.096401
- Z. Meng, T.C. Lang, S. Wessel, F.F. Assaad and A. Muramatsu, Nature, 464, 847 (2010); https://doi.org/10.1038/nature08942
- Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li and L.-S. Wang, Nat. Commun., 5, 3113 (2014); https://doi.org/10.1038/ncomms4113
- R.A. Ng, A. Wild, M.E. Portnoi and R.R. Hartmann, Sci. Rep., 12, 7688 (2022); https://doi.org/10.1038/s41598-022-11742-3
- C. Lian, S.-Q. Hu, J. Zhang, C. Cheng, Z. Yuan, S. Gao and S. Meng, Phys. Rev. Lett., 125, 116802 (2020); https://doi.org/10.48550/arXiv.1803.01604
- S. Gupta, A. Kutana and B.I. Yakobson, J. Phys. Chem. Lett., 9, 2757 (2018); https://doi.org/10.1021/acs.jpclett.8b00640
- F. Crasto de Lima, G. J. Ferreira, and R. H. Miwa, Nano Lett., 19, 6564 (2019); https://doi.org/10.1021/acs.nanolett.9b02802
- M. Khosravi, M. Mansouri, A. Gholami and Y. Yaghoubinezhad, Int. J. Miner. Metall. Mater., 27, 505 (2020); https://doi.org/10.1007/s12613-020-1966-7
- T. Zhang, J. Shen, L. Lü, C. Wang, J. Sang and D. Wu, Trans. Nonferrous Met. Soc. China, 27, 1285 (2017); https://doi.org/10.1016/S1003-6326(17)60149-3
- H. Jafarlou, K. Hassannezhad, H. Asgharzadeh and G. Marami, Mater. Sci. Technol., 34, 455 (2018); https://doi.org/10.1080/02670836.2017.1407543
- S. Qi, X. Li and H. Dong, Mater. Lett., 209, 15 (2017); https://doi.org/10.1016/j.matlet.2017.07.087
- H. Tang and S. Ismail-Beigi, Phys. Rev. Lett., 99, 115501 (2007); https://doi.org/10.1103/PhysRevLett.99.115501
- M. Xiong, C. Fan, Z. Zhao, Q. Wang, J. He, D. Yu, Z. Liu, B. Xu and Y. Tian, J. Mater. Chem. C, 2, 7022 (2014); https://doi.org/10.1039/C4TC00938J
- E.S. Penev, S. Bhowmick, A. Sadrzadeh and B.I. Yakobson, Nano Lett., 12, 2441 (2012); https://doi.org/10.1021/nl3004754
- J.E. Padilha, R. H. Miwa and A. Fazzio, Phys. Chem. Chem. Phys., 18, 25491 (2016); https://doi.org/10.1039/C6CP05092A
- M. Yi and Z. Shen, J. Mater. Chem. A Mater. Energy Sustain., 3, 11700 (2015); https://doi.org/10.1039/C5TA00252D
- F. Crasto de Lima, G.J. Ferreira and R.H. Miwa, J. Chem. Phys., 150, 234701 (2019); https://doi.org/10.1063/1.5100679
- A. Alexandradinata and B.A. Bernevig, Phys. Scr., 164, 014013 (2015); https://doi.org/10.1088/0031-8949/2015/T164/014013
- G.J. Ferreira and D. Loss, Phys. Rev. Lett., 111, 106802 (2013); https://doi.org/10.1103/PhysRevLett.111.106802
- J.-C. Rojas-S’anchez, S. Oyarz’un, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le F’evre, F. Bertran, N. Reyren, J.-M. George and A. Fert, Phys. Rev. Lett., 116, 096602 (2016); https://doi.org/10.1103/PhysRevLett.116.096602
- F.C. de Lima, G.J. Ferreira and R.H. Miwa, Phys. Rev. B, 96, 115426 (2017); https://doi.org/10.1103/PhysRevB.96.115426
- F.C. de Lima, G.J. Ferreira and R.H. Miwa, Phys. Chem. Chem. Phys., 21, 22344 (2019); https://doi.org/10.1039/C9CP04760C
- G. Chang, B.J. Wieder, F. Schindler, D.S. Sanchez, I. Belopolski, S.- M. Huang, B. Singh, D. Wu, T.-R. Chang, T. Neupert, S.-Y. Xu, H. Lin and M.Z. Hasan, Nat. Mater., 17, 978 (2018); https://doi.org/10.1038/s41563-018-0169-3
- P. Xiang, X. Chen, W. Zhang, J. Li, B. Xiao, L. Li and K. Deng, Phys. Chem. Chem. Phys., 19, 24945 (2017); https://doi.org/10.1039/C7CP04989G
- S. Das, D. Lahiri, D.-Y. Lee, A. Agarwal and W. Choi, Carbon, 59, 121 (2013); https://doi.org/10.1016/j.carbon.2013.02.063
- X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang and X.C. Zeng, ACS Nano, 6, 7443 (2012); https://doi.org/10.1021/nn302696v
- P. Canfield, D.K. Finnemore, S.L. Bud’ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham and C. Petrovic, Phys. Rev. Lett., 86, 2423 (2001); https://doi.org/10.1103/PhysRevLett.86.2423
- C. Cheng, J.T. Sun, H. Liu, H.-X. Fu, J. Zhang, X.-R. Chen and S. Meng, 2D Materials, 4, 025032 (2017); https://doi.org/10.1088/2053-1583/aa5e1b
- Y.-P. Zhou and J.-W. Jiang, Sci. Rep., 7, 45516 (2017); https://doi.org/10.1038/srep45516
- J. Yang, R. Quhe, S. Feng, Q. Zhang, M. Lei and J. Lu, Phys. Chem. Chem. Phys., 19, 23982 (2017); https://doi.org/10.1039/C7CP04570K
- K. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao and J. Rao, Nat. Nanotechnol., 9, 233 (2014); https://doi.org/10.1038/nnano.2013.302
- B.H. Hong, IEEE 69th Device Res. Conf., 37-38 (2011); https://doi.org/10.1109/DRC.2011.5994410
- L. Kong, L. Liu, L. Chen, Q. Zhong, P. Cheng, H. Li, Z. Zhang and K. Wu, Nanoscale, 11, 15605 (2019); https://doi.org/10.1039/C9NR03792F
- Z.-Y. Xie, L.-G. Sun, G.-Z. Han and Z.-Z. Gu, Adv. Mater., 20, 3601 (2008); https://doi.org/10.1002/adma.200800495
- G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You and Q. Wang, Angew. Chem. Int. Ed., 54, 15473 (2015); https://doi.org/10.1002/anie.201509285
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
- S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132
- Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang and L. Cao, Sci. Rep., 3, 1866 (2013); https://doi.org/10.1038/srep01866
- M. Kandpal, V. Palaparthy, N. Tiwary and V.R. Rao, IEEE Trans. NanoTechnol., 16, 259 (2017); https://doi.org/10.1109/TNANO.2017.2659383
- K.-S. Kim, H.-J. Lee, C. Lee, S.-K. Lee, H. Jang, J.-H. Ahn, J.-H. Kim and H.-J. Lee, ACS Nano, 5, 5107 (2011); https://doi.org/10.1021/nn2011865
- X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang and J. Cheng, Chem. Vap. Depos., 15, 53 (2009); https://doi.org/10.1002/cvde.200806737
- A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare and C.N.R. Rao, ACS Nano, 4, 1539 (2010); https://doi.org/10.1021/nn9018762
- V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta and A.U. Khan, Results Chem., 3, 100163 (2021); https://doi.org/10.1016/j.rechem.2021.100163
- W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036
- X. Li, W. Cai J. An, S. Kim, J. Nah, D. Yang, A. Velamakanni, R. Piner, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
- X.W. Fu, Z.-M. Liao, J.-X. Zhou, Y.-B. Zhou, H.-C. Wu, R. Zhang, G. Jing, J. Xu, X. Wu, W. Guo and D. Yu, Appl. Phys. Lett., 99, 213107 (2011); https://doi.org/10.1063/1.3663969
- K. Tripathi, G. Gyawali and S.W. Lee, ACS Appl. Mater. Interfaces, 9, 32336 (2017); https://doi.org/10.1021/acsami.7b07922
- H. Duan, E. Xie, L. Han and Z. Xu, Adv. Mater., 20, 3284 (2008); https://doi.org/10.1002/adma.200702149
- M.J. Allen, V.C. Tung and R. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
- J. Li, X. Zeng, T. Ren and E.V. der Heide, Lubricants, 2, 137 (2014); https://doi.org/10.3390/lubricants2030137
- J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang and S. Yang, Langmuir, 26, 15830 (2010); https://doi.org/10.1021/la102862d
- S. Qi, X. Li and H. Dong, Mater. Lett., 209, 15 (2017); https://doi.org/10.1016/j.matlet.2017.07.087
- L. Wu, Alamusi, J. Xue, T. Itoi, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan and B. Gu, J. Intell. Mater. Syst. Struct., 25, 1813 (2014); https://doi.org/10.1177/1045389X14529609
- J. Mondal, M. Marandi, J. Kozlova, M. Merisalu, A. Niilisk and V. Sammelselg, J. Chem. Chem. Eng., 8, 786 (2014).
- S. Yi, G. Li, S. Ding, J. Mo and M. Rahman, Experimental Study of Graphene Oxide Suspension in Drilling Ti-6Al-4V; In: Proceedings of the 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016), Atlantis Press (2016).
- Z. Xie, X. Meng, X. Li, W. Liang, W. Huang, K. Chen, J. Chen, C. Xing, M. Qiu, B. Zhang, G. Nie, N. Xie, X. Yan and H. Zhang, Research, 2020, Article ID 2624617 (2020); https://doi.org/10.34133/2020/2624617
- S. Luo and T. Liu, Adv. Mater., 25, 5650 (2013); https://doi.org/10.1002/adma.201301796
- M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi and S. Akhavan, Micron, 64, 20 (2014); https://doi.org/10.1016/j.micron.2014.03.013
- M. Yang, H. Jin, Z. Sun and R. Gui, J. Mater. Chem. A, 10, 5111 (2022); https://doi.org/10.1039/D1TA10132C
- L. Zhu, B. Zhao, T. Zhang, G. Chen and S.A. Yang, J. Phys. Chem. C, 123, 14858 (2019); https://doi.org/10.1021/acs.jpcc.9b03447
- B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam and N.P. Guisinger, ACS Nano, 13, 3816 (2019); https://doi.org/10.1021/acsnano.8b09339
- H. Liu, J. Gao and J. Zhao, Sci. Rep., 3, 3238 (2013); https://doi.org/10.1038/srep03238
- G. Bhattacharyya, A. Mahata, I. Choudhuri and B. Pathak, J. Phys. D Appl. Phys., 50, 405103 (2017); https://doi.org/10.1088/1361-6463/aa81b8
- H.R. Jiang, Z. Lu, M.C. Wu, F. Ciucci and T.S. Zhao, Nano Energy, 23, 97 (2016); https://doi.org/10.1016/j.nanoen.2016.03.013
- R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Bozovic and A. Gozar, Nat. Nanotechnol., 14, 44 (2019); https://doi.org/10.1038/s41565-018-0317-6
- L. Kong, K. Wu and L. Chen, Front. Phys., 13, 138105 (2018); https://doi.org/10.1007/s11467-018-0752-8
- B. Grunbaum and G.C. Shephard, Math. Mag., 50, 227 (1977); https://doi.org/10.1080/0025570X.1977.11976655
- P. Ranjan, J.M. Lee, P. Kumar and A. Vinu, Adv. Mater., 32, 2000531 (2020); https://doi.org/10.1002/adma.202000531
- W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng and K. Wu, Sci. Bull. (Beijing), 63, 282 (2018); https://doi.org/10.1016/j.scib.2018.02.006
- B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen and K. Wu, Nat. Chem., 8, 563 (2016); https://doi.org/10.1038/nchem.2491
- M. Novotný, F.J. Domínguez-Gutiérrez and P. Krstic, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 5426 (2017); https://doi.org/10.1039/C7TC00976C
- S. Banerjee, G. Periyasamy and S.K. Pati, J. Mater. Chem. A Mater. Energy Sustain., 2, 3856 (2014); https://doi.org/10.1039/c3ta14041e
- Y. Duo, Z. Xie, L. Wang, N.M. Abbasi, T. Yang, Z. Li, G. Hu and H. Zhang, Coord. Chem. Rev., 427, 213549 (2021); https://doi.org/10.1016/j.ccr.2020.213549
- D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, ACS Nano, 4, 2979 (2010); https://doi.org/10.1021/nn1006495
- C. Ataca, A. Ethem and S. Ciraci, Phys. Rev. B, 79, 041406 (2009); https://doi.org/10.1103/PhysRevB.79.041406
- X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S.T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei and J. Shi, Adv. Mater., 30, 1803031 (2018); https://doi.org/10.1002/adma.201803031
- Y. Liu, E.S. Penev and B.I. Yakobson, Angew. Chem. Int. Ed., 52, 3156 (2013); https://doi.org/10.1002/anie.201207972
- L. Shi, T. Zhao, A. Xu and J. Xu, Sci. Bull., 61, 1138 (2016); https://doi.org/10.1007/s11434-016-1118-7
- X. Li, M.M. Honari, Y. Fu, A. Kumar, H. Saghlatoon, P. Mousavi and H.-J. Chung, Flex. Print. Electron., 2, 035001 (2017); https://doi.org/10.1088/2058-8585/aa73c9
- J.Z. Gul, M. Sajid and K.H. Choi, J. Mater. Chem. C Mater. Opt. Electron. Devices, 7, 4692 (2019); https://doi.org/10.1039/C8TC03423K
- P. Cataldi, A. Athanassiou and S.I. Bayer, Appl. Sci., 8, 1438 (2018); https://doi.org/10.3390/app8091438
- S. Bae, S.J. Kim, D. Shin, J.-H. Ahn and B.H. Hong, Phys. Scr., 2012, 014024 (2012); https://doi.org/10.1088/0031-8949/2012/T146/014024
- H. Rashtchi, M.A.F. Sani and A.M. Dayaghi, Ceram. Int., 39, 8123 (2013); https://doi.org/10.1016/j.ceramint.2013.03.085
- M. Tatullo, B. Zavan, F. Genovese, B. Codispoti, I. Makeeva, S. Rengo, L. Fortunato and G. Spagnuolo, Appl. Sci., 9, 3446 (2019); https://doi.org/10.3390/app9173446
- B.S. Tong and Y.M. Song, Austin J. Nanomed. Nanotechnol., 3, 1041 (2015).
- X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao and S.A. Yang, Nanoscale, 8, 15340 (2016); https://doi.org/10.1039/C6NR04186H
- D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li and H. Zhang, Angew. Chem. Int. Ed., 57, 8901 (2018); https://doi.org/10.1002/anie.201802672
- Q.-F. Li, C.G. Duan, X.G. Wan and J.L. Kuo, J. Phys. Chem. C, 119, 8662 (2015); https://doi.org/10.1021/jp512411g
- J. Liu, C. Zhang, L. Xu and S. Ju, RSC Adv., 8, 17773 (2018); https://doi.org/10.1039/C8RA01942H
- L.V. Wang and S. Hu, Science, 335, 1458 (2012); https://doi.org/10.1126/science.1216210
- X. Liu, L. Wang, S. Li, M.S. Rahn, B.I. Yakobson and M.C. Hersam, Nat. Commun., 10, 1642 (2019); https://doi.org/10.1038/s41467-019-09686-w
- X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao and K. Pu, Angew. Chem. Int. Ed., 57, 7804 (2018); https://doi.org/10.1002/anie.201803321
- B. Kang, D. Yu, Y. Dai, S. Chang, D. Chen and Y. Ding, Small, 5, 1292 (2009); https://doi.org/10.1002/smll.200801820
- B. Kang, Y. Dai, S. Chang and D. Chen, Carbon, 46, 978 (2008); https://doi.org/10.1016/j.carbon.2008.03.004
- D.Y. Lee, J.Y. Kim, Y. Lee, S. Lee, W. Miao, H.S. Kim, J.-J. Min and S. Jon, Angew. Chem. Int. Ed., 56, 13684 (2017); https://doi.org/10.1002/anie.201707137
- Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P.K. Chu and X.-F. Yu, Small, 13, 1602896 (2017); https://doi.org/10.1002/smll.201602896
- Z. Xie, S. Chen, Y. Duo, Y. Zhu, T. Fan, Q. Zou, M. Qu, Z. Lin, J. Zhao, Y. Li, L. Liu, S. Bao, H. Chen, D. Fan and H. Zhang, ACS Appl. Mater. Interfaces, 11, 22129 (2019); https://doi.org/10.1021/acsami.9b04628
- J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu and L. Li, J. Mater. Chem. B, 9, 7909 (2021); https://doi.org/10.1039/D1TB01310F
- H.S. Kim and Y.-H. Kim, Biosens. Bioelectron., 69, 186 (2015); https://doi.org/10.1016/j.bios.2015.02.020
- S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2220, 020032 (2020); https://doi.org/10.1063/5.0001189
- M. Donarelli and L. Ottaviano, Sensors, 18, 3638 (2018); https://doi.org/10.3390/s18113638
- L. Mahdavian, J. Nanostructure Chem., 3, 1 (2012); https://doi.org/10.1186/2193-8865-3-1
- A.M. Attaran, S. Abdol-Manafi, M. Javanbakht and M. Enhessari, J. Nanostruc. Chem., 6, 121 (2016); https://doi.org/10.1007/s40097-015-0186-6
- A.L. Verma, S. Saxena, G.S.S. Saini, V. Gaur and V.K. Jain, Thin Solid Films, 519, 8144 (2011); https://doi.org/10.1016/j.tsf.2011.06.034
- S. Saxena and A.L. Verma, AIP Conf. Proc., 1536, 1298 (2013); https://doi.org/10.1063/1.4810718
- S. Saxena and A.L. Verma, Adv. Mater. Lett., 5, 472 (2014); https://doi.org/10.5185/amlett.2013.2429
- S. Saxena, G.S.S. Saini and A.L. Verma, Bull. Mater. Sci., 38, 443 (2015); https://doi.org/10.1007/s12034-015-0864-5
- S. Saxena, A.K. Srivastava, R. Srivastava and V. Kheraj, Eur. J. Eng. Sci. Tech., 2, 70 (2019); https://doi.org/10.33422/EJEST.2019.08.18
- A.M.L. Oliveira, M. Machado, G.A. Silva, D.B. Bitoque, J.T. Ferreira, L.A. Pinto and Q. Ferreira, Nanomaterials, 12, 1149 (2022); https://doi.org/10.3390/nano12071149
- K. Nedunchezhian, N. Aswath, M. Thiruppathy and S. Thirugnanamurthy, J. Clin. Diagn. Res., 10, ZE01 (2016); https://doi.org/10.7860/JCDR/2016/19890.9024
- A.K. Asbury, R.G. Ojeman, S.L. Nielsen and W.H. Sweet, J. Neuropathol. Exp. Neurol., 31, 278 (1972); https://doi.org/10.1097/00005072-197204000-00005
- H. Hatanaka, Eds.: A.B.M.F. Karim and E.R. Laws, Boron Neutron Capture Therapy for Tumors In: Glioma, Springer, Berlin, Heidelberg (1986).
- M. Ionita, G.M. Vlasceanu, A.A. Watzlawek, S.I. Voicu, J.S. Burns and H. Iovu, Composit. B Eng., 121, 34 (2017); https://doi.org/10.1016/j.compositesb.2017.03.031
- B. Kiraly, E.V. Iski, A.J. Mannix, B.L. Fisher, M.C. Hersam and N.P. Guisinger, Nat. Nanotechnol., 4, 2804 (2013); https://doi.org/10.1038/ncomms3804
- C.A. Castilla-Martinez, R. Moury, S. Ould-Amara and U.B. Demirci, Energies, 14, 7003 (2021); https://doi.org/10.3390/en14217003
- S.-Y. Xie, Y. Wang and X.-B. Li, Adv. Mater., 31, 1900392 (2019); https://doi.org/10.1002/adma.201900392
- G. Qin, A. Du and Q. Sun, Phys. Chem. Chem. Phys., 20, 16216 (2018); https://doi.org/10.1039/C8CP01407H
- L. Adamska, S. Sadasivam, J.J. Foley IV, P. Darancet and S. Sharifzadeh, J. Phys. Chem. C, 122, 4037 (2018); https://doi.org/10.1021/acs.jpcc.7b10197
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl and J.E. Goldberger, ACS Nano, 7, 2898 (2013); https://doi.org/10.1021/nn400280c
- A.D. Bartolomeo, Nanomaterials, 10, 579 (2020); https://doi.org/10.3390/nano10030579
- P.T.T. Le, T.C. Phong and M. Yarmohammadi, Phys. Chem. Chem. Phys., 21, 21790 (2019); https://doi.org/10.1039/C9CP04719K
- S.N. Shirodkar, E.S. Penev and B.I. Yakobson, Sci. Bull., 63, 270 (2018); https://doi.org/10.1016/j.scib.2018.02.019
- J. Yuan, N. Yu, K. Xue and X. Miao, RSC Adv., 7, 8654 (2017); https://doi.org/10.1039/C6RA28454J
References
M. Hempel, D. Nezich, J. Kong and M. Hofmann, Nano Lett., 12, 5714 (2012); https://doi.org/10.1021/nl302959a
M.I. Katsnelson, Mater. Today, 10, 20 (2007); https://doi.org/10.1016/S1369-7021(06)71788-6
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
D. Li and R.B. Kaner, Science, 320, 1170 (2008); https://doi.org/10.1126/science.1158180
A.K. Geim, Science, 324, 1530 (2009); https://doi.org/10.1126/science.1158877
T. Fan, Z. Xie, W. Huang, Z. Li and H. Zhang, Nanotechnology, 30, 114002 (2019); https://doi.org/10.1088/1361-6528/aafc0f
Z. Xie, Y.P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu and H. Zhang, Solar RRL, 4, 1900400 (2020); https://doi.org/10.1002/solr.201900400
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang and Z. Peng, Mater. Horiz., 4, 997 (2017); https://doi.org/10.1039/C7MH00543A
L. Shahriary and A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 57 (2014).
A.J. Mannix, Z. Zhang, N.P. Guisinger, B.I. Yakobson and M.C. Hersam, Nat. Nanotechnol., 13, 444 (2018); https://doi.org/10.1038/s41565-018-0157-4
Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan and H. Zhang, Adv. Funct. Mater., 28, 1705833 (2018); https://doi.org/10.1002/adfm.201705833
Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y.P. Feng and J.-C. Zheng, Front. Phys., 14, 33403 (2019); https://doi.org/10.1007/s11467-019-0884-5
Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing, L. Yu, R. Wang, M. Qiu, Y. Zhang, Y. Zhao, X. Yan and H. Zhang, Adv. Sci., 7, 1902236 (2020); https://doi.org/10.1002/advs.201902236
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B.N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang and Q. Bao, ACS Appl. Mater. Interfaces, 9, 12759 (2017); https://doi.org/10.1021/acsami.7b01709
J. Kwon and J. Kim, Mater. Express, 8, 299 (2018); https://doi.org/10.1166/mex.2018.1430
Z. Zhang, E.S. Penev and B.I. Yakobson, Chem. Soc. Rev., 46, 6746 (2017); https://doi.org/10.1039/C7CS00261K
C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li and H. Zhang, ACS Photonics, 5, 621 (2018); https://doi.org/10.1021/acsphotonics.7b01211
J. Chen, T. Fan, Z. Xie, Q. Zeng, P. Xue, T. Zheng, Y. Chen, X. Luo and H. Zhang, Biomaterials, 237, 119827 (2020); https://doi.org/10.1016/j.biomaterials.2020.119827
S.-Y. Xie, Y. Wang and X.-B. Li, Adv. Mater., 31, 1900392 (2019); https://doi.org/10.1002/adma.201900392
W. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Liu and M. Miao, J. Phys. Chem. Lett., 8, 2647 (2017); https://doi.org/10.1021/acs.jpclett.7b00891
J. Yu, M. Zhou, M. Yang, Q. Yang, Z. Zhang and Y. Zhang, ACS Appl. Energy Mater., 3, 11699 (2020); https://doi.org/10.1021/acsaem.0c01808
D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Conden. Matter Phys., 2012, 501686 (2011); https://doi.org/10.5402/2012/501686
Y. Zhao, S. Zeng and J. Ni, Phys. Rev. B, 93, 014502 (2016); https://doi.org/10.1103/PhysRevB.93.014502
S.H. Mir, S. Chakraborty, P.C. Jha, J. Wärnå, H. Soni, P.K. Jha and R. Ahuja, Appl. Phys. Lett., 109, 053903 (2016); https://doi.org/10.1063/1.4960102
X. Tan, H.A. Tahini and S.C. Smith, ACS Appl. Mater. Interfaces, 9, 19825 (2017); https://doi.org/10.1021/acsami.7b03676
Q. Sun, Z. Li, D.J. Searles, Y. Chen, G.M. Lu and A. Du, J. Am. Chem. Soc., 135, 8246 (2013); https://doi.org/10.1021/ja400243r
Y.W. Chen-Yang, H.C. Yang, G.J. Li and Y.K. Li, J. Polym. Res., 11, 275 (2005); https://doi.org/10.1007/s10965-005-3982-8
R. Peköz, M. Konuk, M.E. Kilic and E. Durgun, ACS Omega, 3, 1815 (2018); https://doi.org/10.1021/acsomega.7b01730
D. Li, J. He, G. Ding, Q.Q. Tang, Y. Ying, J. He, C. Zhong, Y. Liu, C. Feng, Q. Sun, H. Zhou, P. Zhou and G. Zhang, Adv. Funct. Mater., 28, 1801685 (2018); https://doi.org/10.1002/adfm.201801685
A.N. Kolmogorov and S. Curtarolo, Phys. Rev. B Condens. Matter Mater. Phys., 73, 180501 (2006); https://doi.org/10.1103/PhysRevB.73.180501
S. Xu, Y. Zhao, J. Liao, X. Yang and H. Xu, Nano Res., 9, 2616 (2016); https://doi.org/10.1007/s12274-016-1148-0
D. Cohen-Tanugi and J.C. Grossman, Nano Lett., 12, 3602 (2012); https://doi.org/10.1021/nl3012853
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano, 8, 5154 (2014); https://doi.org/10.1021/nn501204t
S. Chevalier, G. Caboche, K. Przybylski, and T. Brylewski, J. Appl. Electrochem., 39, 529 (2009); https://doi.org/10.1007/s10800-008-9726-9
A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam and N.P. Guisinger, Science, 350, 1513 (2015); https://doi.org/10.1126/science.aad1080
G. Sachdeva, S. Kaur, R. Pandey and S.P. Karna, Computation, 9, 101 (2021); https://doi.org/10.3390/computation9090101
A. Rastgou, H. Soleymanabadi and A. Bodaghi, Microelectron. Eng., 169, 9 (2017); https://doi.org/10.1016/j.mee.2016.11.012
A. Lherbier, A.R. Botello-Méndez and J.-C. Charlier, 2D Materials, 3, 045006 (2016); https://doi.org/10.1088/2053-1583/3/4/045006
H. Zhong, K. Huang, G. Yu and S. Yuan, Phys. Rev. B, 98, 054104 (2018); https://doi.org/10.1103/PhysRevB.98.054104
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang and H. Zhu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 3592 (2016); https://doi.org/10.1039/C6TC00115G
S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung and J. Nah, ACS Nano, 8, 2766 (2014); https://doi.org/10.1021/nn406481k
V. Bhavanasi, V. Kumar, K. Parida, J. Wang and P. S. Lee, ACS Appl. Mater. Interfaces, 8, 521 (2016); https://doi.org/10.1021/acsami.5b09502
A. Yar and A. Ilyas, J. Phys. Soc. Jpn., 89, 124705 (2020); https://doi.org/10.7566/JPSJ.89.124705
T.P. Cysne, F.S.M. Guimarães, L.M. Canonico, T.G. Rappoport and R.B. Muniz, Phys. Rev. B, 104, (2021); https://doi.org/10.1103/PhysRevB.104.165403
E.S. Penev, A. Kutana and B.I. Yakobson, Nano Lett., 16, 2522 (2016); https://doi.org/10.1021/acs.nanolett.6b00070
P. Gannon, C.T. Tripp, A.K. Knospe, C.V.Ramana, M. Deibert, R.J. Smith, V.I. Gorokhovsky, V. Shutthanandan and D. Gelles, Surf. Coat. Technol., 188-189, 55 (2004); https://doi.org/10.1016/j.surfcoat.2004.08.067
J.H. Liao, Y.C. Zhao, Y.J. Zhao, H. Xu and X.B. Yang, Phys. Chem. Chem. Phys., 19, 29237 (2017); https://doi.org/10.1039/C7CP06180C
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233
J. Nong, X. Xiao, F. Feng, B. Zhao, C. Min, X. Yuan and M. Somekh, Optics Exp., 29, 27750 (2021); https://doi.org/10.1364/OE.432844
H. Gonzalez-Herrero, J.M. Gomez-Rodriguez, P. Mallet, M. Moaied, J.J. Palacios, C. Salgado, M.M. Ugeda, J.-Y. Veuillen, F. Yndurain and I. Brihuega, Science, 352, 437 (2016); https://doi.org/10.1126/science.aad8038
M. Ezawa, Phys. Rev. B, 96, 035425 (2017); https://doi.org/10.1103/PhysRevB.96.035425
Y.-Q. Wang, T. Morimoto and J.E. Moore, Phys. Rev. B, 101, 174419 (2020); https://doi.org/10.1103/PhysRevB.101.174419
G. Chang, S.-Y. Xu, B.J. Wieder, D.S. Sanchez, S.-M. Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin and M.Z. Hasan, Phys. Rev. Lett., 119, 206401 (2017); https://doi.org/10.1103/PhysRevLett.119.206401
S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2369, 020008 (2021); https://doi.org/10.1063/5.0061174
S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2220, 140043 (2020), https://doi.org/10.1063/5.0001188
S. Sheng, J.B. Wu, X. Cong, Q. Zhong, W. Li, W. Hu, J. Gou, P. Cheng, P.-H. Tan, L. Chen and K. Wu, ACS Nano, 13, 4133 (2019); https://doi.org/10.1021/acsnano.8b08909
N.T. Tien, T.Q. Trung, Y.G. Seoul, D.I. Kim and N.-E. Lee, ACS Nano, 5, 7069 (2011); https://doi.org/10.1021/nn2017827
L.M. Canonico, T.P. Cysne, A. Molina-Sanchez, R.B. Muniz and T.G. Rappoport, Phys. Rev. B, 101, (2020); https://doi.org/10.1103/PhysRevB.101.161409
S.I. Vishkayi and M.B. Tagani, Phys. Chem. Chem. Phys., 20, 10493 (2018); https://doi.org/10.1039/C7CP08671G
I. Boustani, A. Quandt, E. Hernandez and A. Rubio, J. Chem. Phys., 110, 3176 (1999); https://doi.org/10.1063/1.477976
M. Evans, J. Joannopoulos and S. Pantelides, Phys. Rev. B Condens. Matter Mater. Phys., 72, 045434 (2005); https://doi.org/10.1103/PhysRevB.72.045434
I. Boustani, A. Rubio and J.A. Alonso, Surf. Sci., 370, 355 (1997); https://doi.org/10.1016/S0039-6028(96)00969-7
B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng and I. Matsuda, Phys. Rev. Lett., 118, 096401 (2017); https://doi.org/10.1103/PhysRevLett.118.096401
Z. Meng, T.C. Lang, S. Wessel, F.F. Assaad and A. Muramatsu, Nature, 464, 847 (2010); https://doi.org/10.1038/nature08942
Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li and L.-S. Wang, Nat. Commun., 5, 3113 (2014); https://doi.org/10.1038/ncomms4113
R.A. Ng, A. Wild, M.E. Portnoi and R.R. Hartmann, Sci. Rep., 12, 7688 (2022); https://doi.org/10.1038/s41598-022-11742-3
C. Lian, S.-Q. Hu, J. Zhang, C. Cheng, Z. Yuan, S. Gao and S. Meng, Phys. Rev. Lett., 125, 116802 (2020); https://doi.org/10.48550/arXiv.1803.01604
S. Gupta, A. Kutana and B.I. Yakobson, J. Phys. Chem. Lett., 9, 2757 (2018); https://doi.org/10.1021/acs.jpclett.8b00640
F. Crasto de Lima, G. J. Ferreira, and R. H. Miwa, Nano Lett., 19, 6564 (2019); https://doi.org/10.1021/acs.nanolett.9b02802
M. Khosravi, M. Mansouri, A. Gholami and Y. Yaghoubinezhad, Int. J. Miner. Metall. Mater., 27, 505 (2020); https://doi.org/10.1007/s12613-020-1966-7
T. Zhang, J. Shen, L. Lü, C. Wang, J. Sang and D. Wu, Trans. Nonferrous Met. Soc. China, 27, 1285 (2017); https://doi.org/10.1016/S1003-6326(17)60149-3
H. Jafarlou, K. Hassannezhad, H. Asgharzadeh and G. Marami, Mater. Sci. Technol., 34, 455 (2018); https://doi.org/10.1080/02670836.2017.1407543
S. Qi, X. Li and H. Dong, Mater. Lett., 209, 15 (2017); https://doi.org/10.1016/j.matlet.2017.07.087
H. Tang and S. Ismail-Beigi, Phys. Rev. Lett., 99, 115501 (2007); https://doi.org/10.1103/PhysRevLett.99.115501
M. Xiong, C. Fan, Z. Zhao, Q. Wang, J. He, D. Yu, Z. Liu, B. Xu and Y. Tian, J. Mater. Chem. C, 2, 7022 (2014); https://doi.org/10.1039/C4TC00938J
E.S. Penev, S. Bhowmick, A. Sadrzadeh and B.I. Yakobson, Nano Lett., 12, 2441 (2012); https://doi.org/10.1021/nl3004754
J.E. Padilha, R. H. Miwa and A. Fazzio, Phys. Chem. Chem. Phys., 18, 25491 (2016); https://doi.org/10.1039/C6CP05092A
M. Yi and Z. Shen, J. Mater. Chem. A Mater. Energy Sustain., 3, 11700 (2015); https://doi.org/10.1039/C5TA00252D
F. Crasto de Lima, G.J. Ferreira and R.H. Miwa, J. Chem. Phys., 150, 234701 (2019); https://doi.org/10.1063/1.5100679
A. Alexandradinata and B.A. Bernevig, Phys. Scr., 164, 014013 (2015); https://doi.org/10.1088/0031-8949/2015/T164/014013
G.J. Ferreira and D. Loss, Phys. Rev. Lett., 111, 106802 (2013); https://doi.org/10.1103/PhysRevLett.111.106802
J.-C. Rojas-S’anchez, S. Oyarz’un, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le F’evre, F. Bertran, N. Reyren, J.-M. George and A. Fert, Phys. Rev. Lett., 116, 096602 (2016); https://doi.org/10.1103/PhysRevLett.116.096602
F.C. de Lima, G.J. Ferreira and R.H. Miwa, Phys. Rev. B, 96, 115426 (2017); https://doi.org/10.1103/PhysRevB.96.115426
F.C. de Lima, G.J. Ferreira and R.H. Miwa, Phys. Chem. Chem. Phys., 21, 22344 (2019); https://doi.org/10.1039/C9CP04760C
G. Chang, B.J. Wieder, F. Schindler, D.S. Sanchez, I. Belopolski, S.- M. Huang, B. Singh, D. Wu, T.-R. Chang, T. Neupert, S.-Y. Xu, H. Lin and M.Z. Hasan, Nat. Mater., 17, 978 (2018); https://doi.org/10.1038/s41563-018-0169-3
P. Xiang, X. Chen, W. Zhang, J. Li, B. Xiao, L. Li and K. Deng, Phys. Chem. Chem. Phys., 19, 24945 (2017); https://doi.org/10.1039/C7CP04989G
S. Das, D. Lahiri, D.-Y. Lee, A. Agarwal and W. Choi, Carbon, 59, 121 (2013); https://doi.org/10.1016/j.carbon.2013.02.063
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang and X.C. Zeng, ACS Nano, 6, 7443 (2012); https://doi.org/10.1021/nn302696v
P. Canfield, D.K. Finnemore, S.L. Bud’ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham and C. Petrovic, Phys. Rev. Lett., 86, 2423 (2001); https://doi.org/10.1103/PhysRevLett.86.2423
C. Cheng, J.T. Sun, H. Liu, H.-X. Fu, J. Zhang, X.-R. Chen and S. Meng, 2D Materials, 4, 025032 (2017); https://doi.org/10.1088/2053-1583/aa5e1b
Y.-P. Zhou and J.-W. Jiang, Sci. Rep., 7, 45516 (2017); https://doi.org/10.1038/srep45516
J. Yang, R. Quhe, S. Feng, Q. Zhang, M. Lei and J. Lu, Phys. Chem. Chem. Phys., 19, 23982 (2017); https://doi.org/10.1039/C7CP04570K
K. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao and J. Rao, Nat. Nanotechnol., 9, 233 (2014); https://doi.org/10.1038/nnano.2013.302
B.H. Hong, IEEE 69th Device Res. Conf., 37-38 (2011); https://doi.org/10.1109/DRC.2011.5994410
L. Kong, L. Liu, L. Chen, Q. Zhong, P. Cheng, H. Li, Z. Zhang and K. Wu, Nanoscale, 11, 15605 (2019); https://doi.org/10.1039/C9NR03792F
Z.-Y. Xie, L.-G. Sun, G.-Z. Han and Z.-Z. Gu, Adv. Mater., 20, 3601 (2008); https://doi.org/10.1002/adma.200800495
G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You and Q. Wang, Angew. Chem. Int. Ed., 54, 15473 (2015); https://doi.org/10.1002/anie.201509285
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang and L. Cao, Sci. Rep., 3, 1866 (2013); https://doi.org/10.1038/srep01866
M. Kandpal, V. Palaparthy, N. Tiwary and V.R. Rao, IEEE Trans. NanoTechnol., 16, 259 (2017); https://doi.org/10.1109/TNANO.2017.2659383
K.-S. Kim, H.-J. Lee, C. Lee, S.-K. Lee, H. Jang, J.-H. Ahn, J.-H. Kim and H.-J. Lee, ACS Nano, 5, 5107 (2011); https://doi.org/10.1021/nn2011865
X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang and J. Cheng, Chem. Vap. Depos., 15, 53 (2009); https://doi.org/10.1002/cvde.200806737
A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare and C.N.R. Rao, ACS Nano, 4, 1539 (2010); https://doi.org/10.1021/nn9018762
V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta and A.U. Khan, Results Chem., 3, 100163 (2021); https://doi.org/10.1016/j.rechem.2021.100163
W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036
X. Li, W. Cai J. An, S. Kim, J. Nah, D. Yang, A. Velamakanni, R. Piner, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
X.W. Fu, Z.-M. Liao, J.-X. Zhou, Y.-B. Zhou, H.-C. Wu, R. Zhang, G. Jing, J. Xu, X. Wu, W. Guo and D. Yu, Appl. Phys. Lett., 99, 213107 (2011); https://doi.org/10.1063/1.3663969
K. Tripathi, G. Gyawali and S.W. Lee, ACS Appl. Mater. Interfaces, 9, 32336 (2017); https://doi.org/10.1021/acsami.7b07922
H. Duan, E. Xie, L. Han and Z. Xu, Adv. Mater., 20, 3284 (2008); https://doi.org/10.1002/adma.200702149
M.J. Allen, V.C. Tung and R. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
J. Li, X. Zeng, T. Ren and E.V. der Heide, Lubricants, 2, 137 (2014); https://doi.org/10.3390/lubricants2030137
J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang and S. Yang, Langmuir, 26, 15830 (2010); https://doi.org/10.1021/la102862d
S. Qi, X. Li and H. Dong, Mater. Lett., 209, 15 (2017); https://doi.org/10.1016/j.matlet.2017.07.087
L. Wu, Alamusi, J. Xue, T. Itoi, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan and B. Gu, J. Intell. Mater. Syst. Struct., 25, 1813 (2014); https://doi.org/10.1177/1045389X14529609
J. Mondal, M. Marandi, J. Kozlova, M. Merisalu, A. Niilisk and V. Sammelselg, J. Chem. Chem. Eng., 8, 786 (2014).
S. Yi, G. Li, S. Ding, J. Mo and M. Rahman, Experimental Study of Graphene Oxide Suspension in Drilling Ti-6Al-4V; In: Proceedings of the 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016), Atlantis Press (2016).
Z. Xie, X. Meng, X. Li, W. Liang, W. Huang, K. Chen, J. Chen, C. Xing, M. Qiu, B. Zhang, G. Nie, N. Xie, X. Yan and H. Zhang, Research, 2020, Article ID 2624617 (2020); https://doi.org/10.34133/2020/2624617
S. Luo and T. Liu, Adv. Mater., 25, 5650 (2013); https://doi.org/10.1002/adma.201301796
M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi and S. Akhavan, Micron, 64, 20 (2014); https://doi.org/10.1016/j.micron.2014.03.013
M. Yang, H. Jin, Z. Sun and R. Gui, J. Mater. Chem. A, 10, 5111 (2022); https://doi.org/10.1039/D1TA10132C
L. Zhu, B. Zhao, T. Zhang, G. Chen and S.A. Yang, J. Phys. Chem. C, 123, 14858 (2019); https://doi.org/10.1021/acs.jpcc.9b03447
B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam and N.P. Guisinger, ACS Nano, 13, 3816 (2019); https://doi.org/10.1021/acsnano.8b09339
H. Liu, J. Gao and J. Zhao, Sci. Rep., 3, 3238 (2013); https://doi.org/10.1038/srep03238
G. Bhattacharyya, A. Mahata, I. Choudhuri and B. Pathak, J. Phys. D Appl. Phys., 50, 405103 (2017); https://doi.org/10.1088/1361-6463/aa81b8
H.R. Jiang, Z. Lu, M.C. Wu, F. Ciucci and T.S. Zhao, Nano Energy, 23, 97 (2016); https://doi.org/10.1016/j.nanoen.2016.03.013
R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Bozovic and A. Gozar, Nat. Nanotechnol., 14, 44 (2019); https://doi.org/10.1038/s41565-018-0317-6
L. Kong, K. Wu and L. Chen, Front. Phys., 13, 138105 (2018); https://doi.org/10.1007/s11467-018-0752-8
B. Grunbaum and G.C. Shephard, Math. Mag., 50, 227 (1977); https://doi.org/10.1080/0025570X.1977.11976655
P. Ranjan, J.M. Lee, P. Kumar and A. Vinu, Adv. Mater., 32, 2000531 (2020); https://doi.org/10.1002/adma.202000531
W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng and K. Wu, Sci. Bull. (Beijing), 63, 282 (2018); https://doi.org/10.1016/j.scib.2018.02.006
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen and K. Wu, Nat. Chem., 8, 563 (2016); https://doi.org/10.1038/nchem.2491
M. Novotný, F.J. Domínguez-Gutiérrez and P. Krstic, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 5426 (2017); https://doi.org/10.1039/C7TC00976C
S. Banerjee, G. Periyasamy and S.K. Pati, J. Mater. Chem. A Mater. Energy Sustain., 2, 3856 (2014); https://doi.org/10.1039/c3ta14041e
Y. Duo, Z. Xie, L. Wang, N.M. Abbasi, T. Yang, Z. Li, G. Hu and H. Zhang, Coord. Chem. Rev., 427, 213549 (2021); https://doi.org/10.1016/j.ccr.2020.213549
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, ACS Nano, 4, 2979 (2010); https://doi.org/10.1021/nn1006495
C. Ataca, A. Ethem and S. Ciraci, Phys. Rev. B, 79, 041406 (2009); https://doi.org/10.1103/PhysRevB.79.041406
X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S.T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei and J. Shi, Adv. Mater., 30, 1803031 (2018); https://doi.org/10.1002/adma.201803031
Y. Liu, E.S. Penev and B.I. Yakobson, Angew. Chem. Int. Ed., 52, 3156 (2013); https://doi.org/10.1002/anie.201207972
L. Shi, T. Zhao, A. Xu and J. Xu, Sci. Bull., 61, 1138 (2016); https://doi.org/10.1007/s11434-016-1118-7
X. Li, M.M. Honari, Y. Fu, A. Kumar, H. Saghlatoon, P. Mousavi and H.-J. Chung, Flex. Print. Electron., 2, 035001 (2017); https://doi.org/10.1088/2058-8585/aa73c9
J.Z. Gul, M. Sajid and K.H. Choi, J. Mater. Chem. C Mater. Opt. Electron. Devices, 7, 4692 (2019); https://doi.org/10.1039/C8TC03423K
P. Cataldi, A. Athanassiou and S.I. Bayer, Appl. Sci., 8, 1438 (2018); https://doi.org/10.3390/app8091438
S. Bae, S.J. Kim, D. Shin, J.-H. Ahn and B.H. Hong, Phys. Scr., 2012, 014024 (2012); https://doi.org/10.1088/0031-8949/2012/T146/014024
H. Rashtchi, M.A.F. Sani and A.M. Dayaghi, Ceram. Int., 39, 8123 (2013); https://doi.org/10.1016/j.ceramint.2013.03.085
M. Tatullo, B. Zavan, F. Genovese, B. Codispoti, I. Makeeva, S. Rengo, L. Fortunato and G. Spagnuolo, Appl. Sci., 9, 3446 (2019); https://doi.org/10.3390/app9173446
B.S. Tong and Y.M. Song, Austin J. Nanomed. Nanotechnol., 3, 1041 (2015).
X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao and S.A. Yang, Nanoscale, 8, 15340 (2016); https://doi.org/10.1039/C6NR04186H
D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li and H. Zhang, Angew. Chem. Int. Ed., 57, 8901 (2018); https://doi.org/10.1002/anie.201802672
Q.-F. Li, C.G. Duan, X.G. Wan and J.L. Kuo, J. Phys. Chem. C, 119, 8662 (2015); https://doi.org/10.1021/jp512411g
J. Liu, C. Zhang, L. Xu and S. Ju, RSC Adv., 8, 17773 (2018); https://doi.org/10.1039/C8RA01942H
L.V. Wang and S. Hu, Science, 335, 1458 (2012); https://doi.org/10.1126/science.1216210
X. Liu, L. Wang, S. Li, M.S. Rahn, B.I. Yakobson and M.C. Hersam, Nat. Commun., 10, 1642 (2019); https://doi.org/10.1038/s41467-019-09686-w
X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao and K. Pu, Angew. Chem. Int. Ed., 57, 7804 (2018); https://doi.org/10.1002/anie.201803321
B. Kang, D. Yu, Y. Dai, S. Chang, D. Chen and Y. Ding, Small, 5, 1292 (2009); https://doi.org/10.1002/smll.200801820
B. Kang, Y. Dai, S. Chang and D. Chen, Carbon, 46, 978 (2008); https://doi.org/10.1016/j.carbon.2008.03.004
D.Y. Lee, J.Y. Kim, Y. Lee, S. Lee, W. Miao, H.S. Kim, J.-J. Min and S. Jon, Angew. Chem. Int. Ed., 56, 13684 (2017); https://doi.org/10.1002/anie.201707137
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P.K. Chu and X.-F. Yu, Small, 13, 1602896 (2017); https://doi.org/10.1002/smll.201602896
Z. Xie, S. Chen, Y. Duo, Y. Zhu, T. Fan, Q. Zou, M. Qu, Z. Lin, J. Zhao, Y. Li, L. Liu, S. Bao, H. Chen, D. Fan and H. Zhang, ACS Appl. Mater. Interfaces, 11, 22129 (2019); https://doi.org/10.1021/acsami.9b04628
J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu and L. Li, J. Mater. Chem. B, 9, 7909 (2021); https://doi.org/10.1039/D1TB01310F
H.S. Kim and Y.-H. Kim, Biosens. Bioelectron., 69, 186 (2015); https://doi.org/10.1016/j.bios.2015.02.020
S. Saxena and A.K. Srivastava, AIP Conf. Proc., 2220, 020032 (2020); https://doi.org/10.1063/5.0001189
M. Donarelli and L. Ottaviano, Sensors, 18, 3638 (2018); https://doi.org/10.3390/s18113638
L. Mahdavian, J. Nanostructure Chem., 3, 1 (2012); https://doi.org/10.1186/2193-8865-3-1
A.M. Attaran, S. Abdol-Manafi, M. Javanbakht and M. Enhessari, J. Nanostruc. Chem., 6, 121 (2016); https://doi.org/10.1007/s40097-015-0186-6
A.L. Verma, S. Saxena, G.S.S. Saini, V. Gaur and V.K. Jain, Thin Solid Films, 519, 8144 (2011); https://doi.org/10.1016/j.tsf.2011.06.034
S. Saxena and A.L. Verma, AIP Conf. Proc., 1536, 1298 (2013); https://doi.org/10.1063/1.4810718
S. Saxena and A.L. Verma, Adv. Mater. Lett., 5, 472 (2014); https://doi.org/10.5185/amlett.2013.2429
S. Saxena, G.S.S. Saini and A.L. Verma, Bull. Mater. Sci., 38, 443 (2015); https://doi.org/10.1007/s12034-015-0864-5
S. Saxena, A.K. Srivastava, R. Srivastava and V. Kheraj, Eur. J. Eng. Sci. Tech., 2, 70 (2019); https://doi.org/10.33422/EJEST.2019.08.18
A.M.L. Oliveira, M. Machado, G.A. Silva, D.B. Bitoque, J.T. Ferreira, L.A. Pinto and Q. Ferreira, Nanomaterials, 12, 1149 (2022); https://doi.org/10.3390/nano12071149
K. Nedunchezhian, N. Aswath, M. Thiruppathy and S. Thirugnanamurthy, J. Clin. Diagn. Res., 10, ZE01 (2016); https://doi.org/10.7860/JCDR/2016/19890.9024
A.K. Asbury, R.G. Ojeman, S.L. Nielsen and W.H. Sweet, J. Neuropathol. Exp. Neurol., 31, 278 (1972); https://doi.org/10.1097/00005072-197204000-00005
H. Hatanaka, Eds.: A.B.M.F. Karim and E.R. Laws, Boron Neutron Capture Therapy for Tumors In: Glioma, Springer, Berlin, Heidelberg (1986).
M. Ionita, G.M. Vlasceanu, A.A. Watzlawek, S.I. Voicu, J.S. Burns and H. Iovu, Composit. B Eng., 121, 34 (2017); https://doi.org/10.1016/j.compositesb.2017.03.031
B. Kiraly, E.V. Iski, A.J. Mannix, B.L. Fisher, M.C. Hersam and N.P. Guisinger, Nat. Nanotechnol., 4, 2804 (2013); https://doi.org/10.1038/ncomms3804
C.A. Castilla-Martinez, R. Moury, S. Ould-Amara and U.B. Demirci, Energies, 14, 7003 (2021); https://doi.org/10.3390/en14217003
S.-Y. Xie, Y. Wang and X.-B. Li, Adv. Mater., 31, 1900392 (2019); https://doi.org/10.1002/adma.201900392
G. Qin, A. Du and Q. Sun, Phys. Chem. Chem. Phys., 20, 16216 (2018); https://doi.org/10.1039/C8CP01407H
L. Adamska, S. Sadasivam, J.J. Foley IV, P. Darancet and S. Sharifzadeh, J. Phys. Chem. C, 122, 4037 (2018); https://doi.org/10.1021/acs.jpcc.7b10197
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl and J.E. Goldberger, ACS Nano, 7, 2898 (2013); https://doi.org/10.1021/nn400280c
A.D. Bartolomeo, Nanomaterials, 10, 579 (2020); https://doi.org/10.3390/nano10030579
P.T.T. Le, T.C. Phong and M. Yarmohammadi, Phys. Chem. Chem. Phys., 21, 21790 (2019); https://doi.org/10.1039/C9CP04719K
S.N. Shirodkar, E.S. Penev and B.I. Yakobson, Sci. Bull., 63, 270 (2018); https://doi.org/10.1016/j.scib.2018.02.019
J. Yuan, N. Yu, K. Xue and X. Miao, RSC Adv., 7, 8654 (2017); https://doi.org/10.1039/C6RA28454J