Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization Studies on Ohmic-Assisted Extraction of Bioactive Compounds from Garlic
Corresponding Author(s) : P. Gurumoorthi
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Ohmic heating technique, a high-temperature short-time process (HTST), where heat is generated by controlling the electrical conductivity of the food components. In this study, garlic was extracted by ohmic heating technique at different voltage gradients (13.33 to 26.66 V/cm) for different extraction times (5, 7.5 and 10 min). Similarly, garlic was conventionally extracted in different heating rate (low, medium, high) for different extraction times (5, 7.5 and 10 min). The process parameters were optimized based on the physico-chemical analyses such as, total phenol content, DPPH radical scavenging activity and diallyl disulphide content by high performance liquid chromatography. Resulted data were compared with the data obtained from conventional extraction done at (35-82 ºC). Though there were no significant differences (p < 0.05) found in physico-chemical properties of garlic extract, while the samples treated with ohmic heating has significant levels of diallyl disulphide content. Diallyl disulphide content of about 67.1% was obtained in ohmic extract whereas only 33.8% was resulted by conventional extract.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Gurbuz, Theory of New Product Development and Its Applications, IntechOpen (2018); https://doi.org/10.5772/intechopen.74527
- S. Bose, B. Laha and S. Banerjee, Pharmacol. Mag., 10, 288 (2014); https://doi.org/10.4103/0973-1296.133279
- C. Zhou, X. Hu, C. Chao, H. Li, S. Zhang, X. Yan, F. Yang and Q. Li, Adv. J. Food Sci. Technol., 9, 269 (2015); https://doi.org/10.19026/ajfst.9.2007
- J.Y. Chan, A.C. Yuen, R.Y. Chan and S.W. Chan, Phytother. Res., 27, 637 (2013); https://doi.org/10.1002/ptr.4796
- F. Temelli, J. Supercrit. Fluids, 47, 583 (2009); https://doi.org/10.1016/j.supflu.2008.10.014
- C. Gros, J.L. Lanoisellé and E.I. Vorobiev, Trans. Inst. Chem. Eng., 81, 1059 (2003); https://doi.org/10.1205/026387603770866182
- M. Aamir and W. Jittanit, Innov. Food Sci. Emerg. Technol., 41, 224 (2017); https://doi.org/10.1016/j.ifset.2017.03.013
- B. Brochier, G.D. Mercali and L.D.F. Marczak, J. Food Process. Preserv., 43, e14254 (2019); https://doi.org/10.1111/jfpp.14254
- S. Chen, X. Shen, S. Cheng, P. Li, J. Du, Y. Chang and H. Meng, PLoS One, 8, e79730 (2013); https://doi.org/10.1371/journal.pone.0079730
- K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, J. Agric. Food Chem., 40, 945 (1992); https://doi.org/10.1021/jf00018a005
- M. Ichikawa, N. Ide, J. Yoshida, H. Yamaguchi and K. Ono, J. Agric. Food Chem., 54, 1535 (2006); https://doi.org/10.1021/jf051742k
- S. Pedisic, Z. Zoric, A. Miljanovic, D. Šimic, M. Repajic and V. Dragovic-Uzelac, Food Technol. Biotechnol., 56, 590 (2018); https://doi.org/10.17113/ftb.56.04.18.5709
- I. Gulcin, Arch. Toxicol., 94, 651 (2020); https://doi.org/10.1007/s00204-020-02689-3
- M. Nowacka, S. Tappi, A. Wiktor, K. Rybak, A. Miszczykowska, J. Czyzewski, K. Drozdzal, D. Witrowa-Rajchert and U. Tylewicz, Foods, 8, 244 (2019); https://doi.org/10.3390/foods8070244
References
E. Gurbuz, Theory of New Product Development and Its Applications, IntechOpen (2018); https://doi.org/10.5772/intechopen.74527
S. Bose, B. Laha and S. Banerjee, Pharmacol. Mag., 10, 288 (2014); https://doi.org/10.4103/0973-1296.133279
C. Zhou, X. Hu, C. Chao, H. Li, S. Zhang, X. Yan, F. Yang and Q. Li, Adv. J. Food Sci. Technol., 9, 269 (2015); https://doi.org/10.19026/ajfst.9.2007
J.Y. Chan, A.C. Yuen, R.Y. Chan and S.W. Chan, Phytother. Res., 27, 637 (2013); https://doi.org/10.1002/ptr.4796
F. Temelli, J. Supercrit. Fluids, 47, 583 (2009); https://doi.org/10.1016/j.supflu.2008.10.014
C. Gros, J.L. Lanoisellé and E.I. Vorobiev, Trans. Inst. Chem. Eng., 81, 1059 (2003); https://doi.org/10.1205/026387603770866182
M. Aamir and W. Jittanit, Innov. Food Sci. Emerg. Technol., 41, 224 (2017); https://doi.org/10.1016/j.ifset.2017.03.013
B. Brochier, G.D. Mercali and L.D.F. Marczak, J. Food Process. Preserv., 43, e14254 (2019); https://doi.org/10.1111/jfpp.14254
S. Chen, X. Shen, S. Cheng, P. Li, J. Du, Y. Chang and H. Meng, PLoS One, 8, e79730 (2013); https://doi.org/10.1371/journal.pone.0079730
K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, J. Agric. Food Chem., 40, 945 (1992); https://doi.org/10.1021/jf00018a005
M. Ichikawa, N. Ide, J. Yoshida, H. Yamaguchi and K. Ono, J. Agric. Food Chem., 54, 1535 (2006); https://doi.org/10.1021/jf051742k
S. Pedisic, Z. Zoric, A. Miljanovic, D. Šimic, M. Repajic and V. Dragovic-Uzelac, Food Technol. Biotechnol., 56, 590 (2018); https://doi.org/10.17113/ftb.56.04.18.5709
I. Gulcin, Arch. Toxicol., 94, 651 (2020); https://doi.org/10.1007/s00204-020-02689-3
M. Nowacka, S. Tappi, A. Wiktor, K. Rybak, A. Miszczykowska, J. Czyzewski, K. Drozdzal, D. Witrowa-Rajchert and U. Tylewicz, Foods, 8, 244 (2019); https://doi.org/10.3390/foods8070244