Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorometric Method for Microdetermination of Human Serum Albumin Using Substituted 3H-Indole Compound
Corresponding Author(s) : Fengzuo Qu
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
A simple, sensitive and reproducible fluorometric method for determining nanoamount of protein is developed. The method is based on the reaction between protein and 3H-indole compounds in aqueous solution. Under the optimized experimental conditions, there is little interference with amino acids and most metal ions. In the detection of total amount of proteins in human serum albumin, the values obtained by this method are close to those of the BCG method. The binding reaction mechanism between this compound and human serum albumin in aqueous solution was studied using fluorescence. Their binding constant is Ka = 8.51 × 105 L mol-1 and the binding site number is n = 1.2. It is confirmed that the combination is a single static queching process. According to the resonance energy transfer theory, the distance between the molecule and tryptophan of human serum albumin is 37.3 Å and the förster energy transfer is very efficient as high as 93.7 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Flarakos, K. Morand and P. Vouros, Anal. Chem., 77, 1345 (2005); doi:10.1021/ac048685z.
- Y.J. Hu, Y. Liu and X.H. Xiao, Biomacromolecules, 10, 517 (2009); doi:10.1021/bm801120k.
- Y.Q. Duan, H.G. Lei, S.G. Min and Z.Q. Duan, Spectrosc. Spectr. Anal., 29, 2998 (2009).
- Y.J. Hu, Y. Liu, Z.B. Pi and S.-S. Qu, Bioorg. Med. Chem., 13, 6609 (2005); doi:10.1016/j.bmc.2005.07.039.
- P.B. Kandagal, S.S. Kalanur, D.H. Manjunatha and J. Seetharamappa, J. Pharm. Biomed. Anal., 47, 260 (2008); doi:10.1016/j.jpba.2008.01.027.
- J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, edn 3 (2006).
- M. Mehrabi, S. Ghobadi and R. Khodarahmi, Photochem. Photobiol. B, 97, 161 (2009); doi:10.1016/j.jphotobiol.2009.09.005.
- P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud and O.B. Ijare, J. Pharm. Biomed. Anal., 41, 393 (2006); doi:10.1016/j.jpba.2005.11.037.
- Y.L. Chen, T.K. Xu, X.H. Shen and H. Gao, J. Photochem. Photobiol. Chem., 169, 123 (2005); doi:10.1016/j.jphotochem.2004.06.010.
- R. Bera, B. Sahoo, K. Ghosh and S. Dasgupta, Int. J. Biol. Macromol., 42, 14 (2008); doi:10.1016/j.ijbiomac.2007.08.010.
- H. Du, J. Xiang, Y.A. Zhang and Y. Tang, Bioorg. Med. Chem. Lett., 17, 1701 (2007); doi:10.1016/j.bmcl.2006.12.069.
- H.J. Liu, P. Li and Y.D. Zhang, Spectrosc. Spectr. Anal., 29, 1915 (2009).
- X.M. Cao and L.M. Du, Spectrosc. Spectr. Anal., 27, 973 (2007).
- F. Cui, L. Qin, G. Zhang, X. Yao and B. Lei, Macromol. Biosci., 8, 1079 (2008); doi:10.1002/mabi.200800105.
- F. Cui, Q. Zhang, Y. Yan, X. Yao, G. Qu and Y. Lu, Carbohydr. Polym., 73, 464 (2008); doi:10.1016/j.carbpol.2007.12.032.
- T. Förster, in ed.: O. Sinanoglu, Delocalized Excitation and Excitation Transfer, In: Modern Quantum Chemistry, Academic Press, New York, p. 93 (1965).
- T.K. Xu, N. Li, X.H. Shen and H.C. Gao, Spectrosc. Spectr. Anal., 25, 1443 (2005).
- T.K. Xu, X.H. Shen and H.C. Gao, Spectrosc. Spectr. Anal., 25, 857 (2005).
References
J. Flarakos, K. Morand and P. Vouros, Anal. Chem., 77, 1345 (2005); doi:10.1021/ac048685z.
Y.J. Hu, Y. Liu and X.H. Xiao, Biomacromolecules, 10, 517 (2009); doi:10.1021/bm801120k.
Y.Q. Duan, H.G. Lei, S.G. Min and Z.Q. Duan, Spectrosc. Spectr. Anal., 29, 2998 (2009).
Y.J. Hu, Y. Liu, Z.B. Pi and S.-S. Qu, Bioorg. Med. Chem., 13, 6609 (2005); doi:10.1016/j.bmc.2005.07.039.
P.B. Kandagal, S.S. Kalanur, D.H. Manjunatha and J. Seetharamappa, J. Pharm. Biomed. Anal., 47, 260 (2008); doi:10.1016/j.jpba.2008.01.027.
J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, edn 3 (2006).
M. Mehrabi, S. Ghobadi and R. Khodarahmi, Photochem. Photobiol. B, 97, 161 (2009); doi:10.1016/j.jphotobiol.2009.09.005.
P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud and O.B. Ijare, J. Pharm. Biomed. Anal., 41, 393 (2006); doi:10.1016/j.jpba.2005.11.037.
Y.L. Chen, T.K. Xu, X.H. Shen and H. Gao, J. Photochem. Photobiol. Chem., 169, 123 (2005); doi:10.1016/j.jphotochem.2004.06.010.
R. Bera, B. Sahoo, K. Ghosh and S. Dasgupta, Int. J. Biol. Macromol., 42, 14 (2008); doi:10.1016/j.ijbiomac.2007.08.010.
H. Du, J. Xiang, Y.A. Zhang and Y. Tang, Bioorg. Med. Chem. Lett., 17, 1701 (2007); doi:10.1016/j.bmcl.2006.12.069.
H.J. Liu, P. Li and Y.D. Zhang, Spectrosc. Spectr. Anal., 29, 1915 (2009).
X.M. Cao and L.M. Du, Spectrosc. Spectr. Anal., 27, 973 (2007).
F. Cui, L. Qin, G. Zhang, X. Yao and B. Lei, Macromol. Biosci., 8, 1079 (2008); doi:10.1002/mabi.200800105.
F. Cui, Q. Zhang, Y. Yan, X. Yao, G. Qu and Y. Lu, Carbohydr. Polym., 73, 464 (2008); doi:10.1016/j.carbpol.2007.12.032.
T. Förster, in ed.: O. Sinanoglu, Delocalized Excitation and Excitation Transfer, In: Modern Quantum Chemistry, Academic Press, New York, p. 93 (1965).
T.K. Xu, N. Li, X.H. Shen and H.C. Gao, Spectrosc. Spectr. Anal., 25, 1443 (2005).
T.K. Xu, X.H. Shen and H.C. Gao, Spectrosc. Spectr. Anal., 25, 857 (2005).