Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study of Intermolecular Hydrogen Bonding and Interaction in Ethylene Glycol-Water Mixtures
Corresponding Author(s) : Jianbin Zhang
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
Aqueous solution of ethylene glycol (EG) were used in the SO2 absorption processes. Meanwhile, the various spectra suggested that aqueous solution of ethylene glycol can bond with SO2 by the mean of hydrogen bonding and interaction. It is therefore important to understand the interaction of ethylene glycol with H2O at the molecular level. In this work, the ground-state structure and energies of ethylene glycol, H2O, EG2-H2O and EG/H2O1-3 hydrogen bonded clusters were investigated using density functional theory (DFT). Calculated IR spectra, dipole moments and rotational constants for all optimum conformers at the same level are provided for comparison with the experiments. The binding energies (-De0) and the calculated harmonic vibrational frequencies for ethylene glycol and H2O are in good agreement with previous calculated and experimental results. The -De0 values for ethylene glycol + H2O shows that the addition of H2O can disrupt the original hydrogen bonds in ethylene glycol system and ethylene glycol can be easily solved in water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Esteve, A. Conesa and A. Coronas, J. Chem. Eng. Data, 48, 392 (2003); doi:10.1021/je025606c.
- H.C. Ku and C.H. Tu, J. Chem. Eng. Data, 45, 391 (2000); doi:10.1021/je990281u.
- A. Valtz, C. Coquelet and D. Richon, Fluid Phase Equilib., 220, 75 (2004); doi:10.1016/j.fluid.2004.02.016.
- D. Nagel, R. De Kermadec, H.G. Lintz, C. Roizard and F. Lapicque, Chem. Eng. Sci., 57, 4883 (2002); doi:10.1016/S0009-2509(02)00283-X.
- R. De Kermadec, F. Lapicque, D. Roizard and C. Roizard, Ind. Eng. Chem. Res., 41, 153 (2002); doi:10.1021/ie010173c.
- C.N. Schubert and W.I. Echter, The Method of Polymer Ethylene Glycol for Removal Pollution from Gases, CN Patent 1364096A (2002).
- X.X. Li, Y.X. Liu and X.H. Wei, Chin. J. Chem. Eng., 13, 234 (2005).
- X.H. Wei, CN Patent, 02130605,2 (2002).
- X.H. Wei, J.B. Zhang and P.Y. Zhang, Removal of SOx from Flue Gas by Ethylene Glycol, CN Patent 101053746 (2007).
- J.B. Zhang, P.Y. Zhang, G.H. Chen, F. Han and X. Wei, J. Chem. Eng. Data, 53, 1479 (2008); doi:10.1021/je800117x.
- J.B. Zhang, P.Y. Zhang, F. Han, G. Chen, R. Deng and X. Wei, J. Chem. Eng. Data, 53, 2372 (2008); doi:10.1021/je800271e.
- J.B. Zhang, P.Y. Zhang, K. Ma, F. Han, G.H. Chen and X.H. Wei, Sci. China Ser., Biol. Chem., 51, 420 (2008); doi:10.1007/s11426-008-0045-0.
- J.B. Zhang, P.Y. Zhang, F. Han, G. Chen, L. Zhang and X. Wei, Ind. Eng. Chem. Res., 48, 1287 (2009); doi:10.1021/ie801544t.
- E. Potteau, E. Levillain and J.P. Lelieur, J. Electroanal. Chem., 476, 15 (1999); doi:10.1016/S0022-0728(99)00356-3.
- M.H.H. van Dam, A.S. Lamine, D. Roizard, P. Lochon and C. Roizard, Ind. Eng. Chem. Res., 36, 4628 (1997); doi:10.1021/ie970111f.
- P. Ivopoulos, M. Sotiropoulou, G. Bokias and G. Staikos, Langmuir, 22, 9181 (2006); doi:10.1021/la0614379.
- L. Radom, W.A. Lathan, W.J. Hehre and J.A. Pople, J. Am. Chem. Soc., 95, 693 (1973); doi:10.1021/ja00784a008.
- Y. Elkadi and L. Adamowicz, Chem. Phys. Lett., 261, 507 (1996); doi:10.1016/0009-2614(96)00999-2.
- P. Manivet and M. Masella, Chem. Phys. Lett., 288, 642 (1998); doi:10.1016/S0009-2614(98)00356-X.
- D. Christen, L.H. Coudert, J.A. Larsson and D. Cremer, J. Mol. Spectrosc., 205, 185 (2001); doi:10.1006/jmsp.2000.8263.
- T. Oie, I.A. Topol and S.K. Burt, J. Phys. Chem., 98, 1121 (1994); doi:10.1021/j100055a013.
- D.L. Howard, P. Jørgensen and H.G. Kjaergaard, J. Am. Chem. Soc., 127, 17096 (2005); doi:10.1021/ja055827d.
- H.S.P. Müller and D. Christen, J. Mol. Spectrosc., 228, 298 (2004); doi:10.1016/j.jms.2004.04.009.
- O.V. de Oliveira and L.C. Gomide Freitas, J. Mol. Struct., 728, 179 (2005); doi:10.1016/j.theochem.2005.05.017.
- X.P. Long, J.B. Nicholas, M.F. Guest and R.L. Ornstein, J. Mol. Struct., 412, 121 (1997); doi:10.1016/S0022-2860(96)09453-7.
- X. Xu and W.A. Goddard, J. Phys. Chem. A, 108, 2305 (2004); doi:10.1021/jp035869t.
- L. González, O. Mó, M. Yáñez and J. Elguero, J. Mol. Struct., 371, 1 (1996); doi:10.1016/S0166-1280(96)04532-0.
- C.J. Cramer and D.G. Truhlar, J. Am. Chem. Soc., 116, 3892 (1994); doi:10.1021/ja00088a027.
- L.A. Curtiss, D.J. Frurip and M.J. Blander, Chem. Phys., 71, 2703 (1979); doi:10.1063/1.438628.
- G.I. Csonka, A. Ruzsinszky and J.P. Perdew, J. Phys. Chem. B, 109, 21471 (2005); doi:10.1021/jp055443+.
- L.M. Goss, S.W. Sharpe, T.A. Blake, V. Vaida and J.W. Brault, J. Phys. Chem. A, 103, 8620 (1999); doi:10.1021/jp9920702.
- B. Zelent, N.V. Nucci and J.M. Vanderkooi, J. Phys. Chem. A, 108, 11141 (2004); doi:10.1021/jp0475584.
- K.S. Alongi, T.S. Dibble, G.C. Shields and K.N. Kirschner, J. Phys. Chem. A, 110, 3686 (2006); doi:10.1021/jp057165k.
- G. Ma and H.C. Allen, J. Phys. Chem. B, 107, 6343 (2003); doi:10.1021/jp027364t.
- E.L. Hommel, J.K. Merle, G. Ma, C.M. Hadad and H.C. Allen, J. Phys. Chem. B, 109, 811 (2005); doi:10.1021/jp046715w.
- M.A. Murcko and R. Dipaola, J. Am. Chem. Soc., 114, 10010 (1992); doi:10.1021/ja00051a038.
- Y. Sakai, M. Koyanagi, K. Mogi and E. Miyoshi, Surf. Sci., 513, 272 (2002); doi:10.1016/S0039-6028(02)01700-4.
References
X. Esteve, A. Conesa and A. Coronas, J. Chem. Eng. Data, 48, 392 (2003); doi:10.1021/je025606c.
H.C. Ku and C.H. Tu, J. Chem. Eng. Data, 45, 391 (2000); doi:10.1021/je990281u.
A. Valtz, C. Coquelet and D. Richon, Fluid Phase Equilib., 220, 75 (2004); doi:10.1016/j.fluid.2004.02.016.
D. Nagel, R. De Kermadec, H.G. Lintz, C. Roizard and F. Lapicque, Chem. Eng. Sci., 57, 4883 (2002); doi:10.1016/S0009-2509(02)00283-X.
R. De Kermadec, F. Lapicque, D. Roizard and C. Roizard, Ind. Eng. Chem. Res., 41, 153 (2002); doi:10.1021/ie010173c.
C.N. Schubert and W.I. Echter, The Method of Polymer Ethylene Glycol for Removal Pollution from Gases, CN Patent 1364096A (2002).
X.X. Li, Y.X. Liu and X.H. Wei, Chin. J. Chem. Eng., 13, 234 (2005).
X.H. Wei, CN Patent, 02130605,2 (2002).
X.H. Wei, J.B. Zhang and P.Y. Zhang, Removal of SOx from Flue Gas by Ethylene Glycol, CN Patent 101053746 (2007).
J.B. Zhang, P.Y. Zhang, G.H. Chen, F. Han and X. Wei, J. Chem. Eng. Data, 53, 1479 (2008); doi:10.1021/je800117x.
J.B. Zhang, P.Y. Zhang, F. Han, G. Chen, R. Deng and X. Wei, J. Chem. Eng. Data, 53, 2372 (2008); doi:10.1021/je800271e.
J.B. Zhang, P.Y. Zhang, K. Ma, F. Han, G.H. Chen and X.H. Wei, Sci. China Ser., Biol. Chem., 51, 420 (2008); doi:10.1007/s11426-008-0045-0.
J.B. Zhang, P.Y. Zhang, F. Han, G. Chen, L. Zhang and X. Wei, Ind. Eng. Chem. Res., 48, 1287 (2009); doi:10.1021/ie801544t.
E. Potteau, E. Levillain and J.P. Lelieur, J. Electroanal. Chem., 476, 15 (1999); doi:10.1016/S0022-0728(99)00356-3.
M.H.H. van Dam, A.S. Lamine, D. Roizard, P. Lochon and C. Roizard, Ind. Eng. Chem. Res., 36, 4628 (1997); doi:10.1021/ie970111f.
P. Ivopoulos, M. Sotiropoulou, G. Bokias and G. Staikos, Langmuir, 22, 9181 (2006); doi:10.1021/la0614379.
L. Radom, W.A. Lathan, W.J. Hehre and J.A. Pople, J. Am. Chem. Soc., 95, 693 (1973); doi:10.1021/ja00784a008.
Y. Elkadi and L. Adamowicz, Chem. Phys. Lett., 261, 507 (1996); doi:10.1016/0009-2614(96)00999-2.
P. Manivet and M. Masella, Chem. Phys. Lett., 288, 642 (1998); doi:10.1016/S0009-2614(98)00356-X.
D. Christen, L.H. Coudert, J.A. Larsson and D. Cremer, J. Mol. Spectrosc., 205, 185 (2001); doi:10.1006/jmsp.2000.8263.
T. Oie, I.A. Topol and S.K. Burt, J. Phys. Chem., 98, 1121 (1994); doi:10.1021/j100055a013.
D.L. Howard, P. Jørgensen and H.G. Kjaergaard, J. Am. Chem. Soc., 127, 17096 (2005); doi:10.1021/ja055827d.
H.S.P. Müller and D. Christen, J. Mol. Spectrosc., 228, 298 (2004); doi:10.1016/j.jms.2004.04.009.
O.V. de Oliveira and L.C. Gomide Freitas, J. Mol. Struct., 728, 179 (2005); doi:10.1016/j.theochem.2005.05.017.
X.P. Long, J.B. Nicholas, M.F. Guest and R.L. Ornstein, J. Mol. Struct., 412, 121 (1997); doi:10.1016/S0022-2860(96)09453-7.
X. Xu and W.A. Goddard, J. Phys. Chem. A, 108, 2305 (2004); doi:10.1021/jp035869t.
L. González, O. Mó, M. Yáñez and J. Elguero, J. Mol. Struct., 371, 1 (1996); doi:10.1016/S0166-1280(96)04532-0.
C.J. Cramer and D.G. Truhlar, J. Am. Chem. Soc., 116, 3892 (1994); doi:10.1021/ja00088a027.
L.A. Curtiss, D.J. Frurip and M.J. Blander, Chem. Phys., 71, 2703 (1979); doi:10.1063/1.438628.
G.I. Csonka, A. Ruzsinszky and J.P. Perdew, J. Phys. Chem. B, 109, 21471 (2005); doi:10.1021/jp055443+.
L.M. Goss, S.W. Sharpe, T.A. Blake, V. Vaida and J.W. Brault, J. Phys. Chem. A, 103, 8620 (1999); doi:10.1021/jp9920702.
B. Zelent, N.V. Nucci and J.M. Vanderkooi, J. Phys. Chem. A, 108, 11141 (2004); doi:10.1021/jp0475584.
K.S. Alongi, T.S. Dibble, G.C. Shields and K.N. Kirschner, J. Phys. Chem. A, 110, 3686 (2006); doi:10.1021/jp057165k.
G. Ma and H.C. Allen, J. Phys. Chem. B, 107, 6343 (2003); doi:10.1021/jp027364t.
E.L. Hommel, J.K. Merle, G. Ma, C.M. Hadad and H.C. Allen, J. Phys. Chem. B, 109, 811 (2005); doi:10.1021/jp046715w.
M.A. Murcko and R. Dipaola, J. Am. Chem. Soc., 114, 10010 (1992); doi:10.1021/ja00051a038.
Y. Sakai, M. Koyanagi, K. Mogi and E. Miyoshi, Surf. Sci., 513, 272 (2002); doi:10.1016/S0039-6028(02)01700-4.