Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Asymmetric Synthesis, Characterization and Stereoselectivity of Novel 1-{2-[(1R,2S)-2-(Chloromethyl)cyclopropyl]ethyl}-4-methoxybenzene via Boronate Complex
Corresponding Author(s) : Habib Hussain
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
Novel 1-[2-{(1R,2S)-2-(chloromethyl)cyclopropyl]ethyl}-4-methoxybenzene was synthesized by cyclopropanation reaction through a novel route. Carbamate was reacted with 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane to form boronic ester which was further treated with 1-bromo-3,5-bis(trifluoromethyl)benzene in the presence of n-BuLi and nucleophilic boronate complex was synthesized. 1-[2-{(1R,2S)-2-(chloromethyl)cyclopropyl]ethyl}-4-methoxybenzene was then prepared by reacting boronate complex with different electrophiles like trichloroisocyanuric acid (TCCA) and N-chlorosuccinimide (NCS). Yields and diastereomeric ratios (d.r) were studied by using various aryl lithiums and electrophiles at different temperatures. Best yield, diastereomeric ratio (d.r), enantiomeric ratio (e.r), enantiomeric excess (e.e), enantiospecificity and [a]D were 67 %, 2.1:1, 68.6:28.9, 39.7, 0.41 and +3.84, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Larouche-Gauthier, T.G. Elford and V.K. Aggarwal, J. Am. Chem. Soc., 133, 16794 (2011); doi:10.1021/ja2077813.
- H.C. Brown and A.K. Gupta, J. Organomet. Chem., 341, 73 (1988); doi:10.1016/0022-328X(88)89064-8.
- S. Toyota and M. Oki, Bull. Chem. Soc. Jpn., 65, 1832 (1992); doi:10.1246/bcsj.65.1832.
- P.F. Kaiser, J.M. White and C.A. Hutton, J. Am. Chem. Soc., 130, 16450 (2008); doi:10.1021/ja8044629.
- J.C.H. Lee and D.G. Hall, J. Am. Chem. Soc., 132, 5544 (2010); doi:10.1021/ja9104057.
- S. Lou, P.N. Moquist and S.E. Schaus, J. Am. Chem. Soc., 128, 12660 (2006); doi:10.1021/ja0651308.
- D. Chong, A. Nafady, P.J. Costa, M.J. Calhorda and W.E. Geiger, J. Am. Chem. Soc., 127, 15676 (2005); doi:10.1021/ja055045k.
- S.C. Pellegrinet and J.M. Goodman, J. Am. Chem. Soc., 128, 3116 (2005); doi:10.1021/ja056727a.
- E. Vedejs, S.C. Fields, S. Lin and M.R. Schrimpf, J. Org. Chem., 60, 3028 (1995); doi:10.1021/jo00115a017.
- S. Lessard, F. Peng and D.G. Hall, J. Am. Chem. Soc., 131, 9612 (2009); doi:10.1021/ja903946f.
- G.D. Hall, J.C.H. Lee and J.Y. Ding, Pure Appl. Chem., 84, 2263 (2012); doi:10.1351/PAC-CON-12-02-04.
References
R. Larouche-Gauthier, T.G. Elford and V.K. Aggarwal, J. Am. Chem. Soc., 133, 16794 (2011); doi:10.1021/ja2077813.
H.C. Brown and A.K. Gupta, J. Organomet. Chem., 341, 73 (1988); doi:10.1016/0022-328X(88)89064-8.
S. Toyota and M. Oki, Bull. Chem. Soc. Jpn., 65, 1832 (1992); doi:10.1246/bcsj.65.1832.
P.F. Kaiser, J.M. White and C.A. Hutton, J. Am. Chem. Soc., 130, 16450 (2008); doi:10.1021/ja8044629.
J.C.H. Lee and D.G. Hall, J. Am. Chem. Soc., 132, 5544 (2010); doi:10.1021/ja9104057.
S. Lou, P.N. Moquist and S.E. Schaus, J. Am. Chem. Soc., 128, 12660 (2006); doi:10.1021/ja0651308.
D. Chong, A. Nafady, P.J. Costa, M.J. Calhorda and W.E. Geiger, J. Am. Chem. Soc., 127, 15676 (2005); doi:10.1021/ja055045k.
S.C. Pellegrinet and J.M. Goodman, J. Am. Chem. Soc., 128, 3116 (2005); doi:10.1021/ja056727a.
E. Vedejs, S.C. Fields, S. Lin and M.R. Schrimpf, J. Org. Chem., 60, 3028 (1995); doi:10.1021/jo00115a017.
S. Lessard, F. Peng and D.G. Hall, J. Am. Chem. Soc., 131, 9612 (2009); doi:10.1021/ja903946f.
G.D. Hall, J.C.H. Lee and J.Y. Ding, Pure Appl. Chem., 84, 2263 (2012); doi:10.1351/PAC-CON-12-02-04.