Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of C-N Co-Doped TiO2 with Visible-Light Responsive Photocatalytic Activity in Degradation of 2,4,6-Trichlorophenol
Corresponding Author(s) : S.Z. Hu
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
A one-step, hydrothermal method for the synthesis of C-N co-doped titanium dioxide photocatalysts is demonstrated. The incorporation of nitrogen from ammonia and carbon from alcohols with different chain length (methanol, ethanol, isopropanol) used as carbon precursors was confirmed by XRD, UV-visible and XPS analyses. The results indicated that C and N doped into the TiO2 crystal lattice simultaneously by hydrothermal process. The photocatalytic performance in the degradation of 2,4,6-trichlorophenol indicated that C and N co-doped TiO2 showed much higher photocatalytic activity than pure TiO2 and single doped samples under visible light. The possible mechanism was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
- R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
- X.H. Li and S.X. Liu, Acta Phys. Chim. Sin., 24, 2019 (2008); doi:10.1016/S1872-1508(08)60079-0.
- Q. Ling, J. Sun and Q. Zhou, Appl. Surf. Sci., 254, 3236 (2008); doi:10.1016/j.apsusc.2007.11.001.
- D.B. Hamal and K.J. Klabunde, J. Colloid Interf. Sci., 311, 514 (2007); doi:10.1016/j.jcis.2007.03.001.
- D.M. Chen, Z.Y. Jiang, J.Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007); doi:10.1021/ie061491k.
- S. Yin, M. Komatsu, Q. Zhang, F. Saito and T. Sato, J. Mater. Sci., 42, 2399 (2007); doi:10.1007/s10853-006-1231-0.
- S. Zhang and L. Song, Catal. Commun., 10, 1725 (2009); doi:10.1016/j.catcom.2009.05.017.
- R.A. Spurr and H. Myers, Anal. Chem., 29, 760 (1957); doi:10.1021/ac60125a006.
- J. Lin, Y. Lin, P. Liu, M.J. Meziani, L.F. Allard and Y.P. Sun, J. Am. Chem. Soc., 124, 11514 (2002); doi:10.1021/ja0206341.
- B. Oregan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.
- C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, J. Phys. Chem. B, 109, 11414 (2005); doi:10.1021/jp051756t.
- X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An and Y.H. Wang, Appl. Catal. B, 81, 267 (2008); doi:10.1016/j.apcatb.2007.12.022.
- B.T. Su, X.H. Liu, X.X. Peng, T. Xiao and Z.X. Su, Mater. Sci. Eng. A, 349, 59 (2003); doi:10.1016/S0921-5093(02)00544-0.
- K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, K. Ohira, M. Kouya and K. Kumada, Thin Solid Films, 516, 7482 (2008); doi:10.1016/j.tsf.2008.03.041.
- K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, T. Sonoda, S. Miura and K. Kumada, Thin Solid Films, 516, 7560 (2008); doi:10.1016/j.tsf.2008.05.048.
- S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); doi:10.1002/anie.200351577.
- P.H. Wang, T. Zhou, R. Wang and T.T. Lim, Water Res., 45, 5015 (2011); doi:10.1016/j.watres.2011.07.002.
References
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
X.H. Li and S.X. Liu, Acta Phys. Chim. Sin., 24, 2019 (2008); doi:10.1016/S1872-1508(08)60079-0.
Q. Ling, J. Sun and Q. Zhou, Appl. Surf. Sci., 254, 3236 (2008); doi:10.1016/j.apsusc.2007.11.001.
D.B. Hamal and K.J. Klabunde, J. Colloid Interf. Sci., 311, 514 (2007); doi:10.1016/j.jcis.2007.03.001.
D.M. Chen, Z.Y. Jiang, J.Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007); doi:10.1021/ie061491k.
S. Yin, M. Komatsu, Q. Zhang, F. Saito and T. Sato, J. Mater. Sci., 42, 2399 (2007); doi:10.1007/s10853-006-1231-0.
S. Zhang and L. Song, Catal. Commun., 10, 1725 (2009); doi:10.1016/j.catcom.2009.05.017.
R.A. Spurr and H. Myers, Anal. Chem., 29, 760 (1957); doi:10.1021/ac60125a006.
J. Lin, Y. Lin, P. Liu, M.J. Meziani, L.F. Allard and Y.P. Sun, J. Am. Chem. Soc., 124, 11514 (2002); doi:10.1021/ja0206341.
B. Oregan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.
C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, J. Phys. Chem. B, 109, 11414 (2005); doi:10.1021/jp051756t.
X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An and Y.H. Wang, Appl. Catal. B, 81, 267 (2008); doi:10.1016/j.apcatb.2007.12.022.
B.T. Su, X.H. Liu, X.X. Peng, T. Xiao and Z.X. Su, Mater. Sci. Eng. A, 349, 59 (2003); doi:10.1016/S0921-5093(02)00544-0.
K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, K. Ohira, M. Kouya and K. Kumada, Thin Solid Films, 516, 7482 (2008); doi:10.1016/j.tsf.2008.03.041.
K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, T. Sonoda, S. Miura and K. Kumada, Thin Solid Films, 516, 7560 (2008); doi:10.1016/j.tsf.2008.05.048.
S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); doi:10.1002/anie.200351577.
P.H. Wang, T. Zhou, R. Wang and T.T. Lim, Water Res., 45, 5015 (2011); doi:10.1016/j.watres.2011.07.002.