Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influences of Pore Distribution of Carbon Electrodes on High-Rate Discharge Capacity and Cell Power in Li/SOCl2 Cell
Corresponding Author(s) : Kwang-Il Chung
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
Discharge characteristics of Li/SOCl2 cells are known to be affected by the pore size distributions of carbon electrode. In this study, we investigate effects of the pore distribution of the carbon cathode on the high-rate capacity and cell power. We carry SEM, mercury porosimetry and BET measurements for the characterization of carbon electrodes having different densities or various mixing ratio between acetylene black (AB) and ketjen black (KB). Upon the high-rate discharge characteristics, it is revealed that density effect is more significant than the effect of carbon mixing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Linden, Lithium Cells: Handbook of Batteries and Fuel Cells, McGraw Hill Book Co., New York, pp. 11-1-11-90 (1984).
- A.N. Dey and P. Bro, In ed.: D.H. Collins, Power Sources: Primary Li/SOCl2 Cells III, Academic Press, London, Vol. 6, p. 493 (1977).
- A.N. Dey and R.W. Holmes, J. Electrochem. Soc., 127, 775 (1980); doi:10.1149/1.2129756.
- J.A. Christopulos and S. Gilman, In Proceedings of the 10 Intersociety Energy Conversion Engineering Conferences, IEEE publisher, DE, p. 437 (1975).
- D. Carmier, C. Vix-Guterl and J. Lahaye, J. Power Sources, 103, 237 (2002); doi:10.1016/S0378-7753(01)00870-9.
- D. Carmier, C. Vix-Guterl and J. Lahaye, Carbon, 39, 2181 (2001); doi:10.1016/S0008-6223(01)00043-4.
- D. Carmier, C. Vix-Guterl and J. Lahaye, Carbon, 39, 2187 (2001); doi:10.1016/S0008-6223(01)00044-6.
- http://www.vitzrocell.com/product/e_pr_01.php.
- V.S. Bagotzky, V.E. Kazarinov, Y.M. Vol’fkovich, L.S. Kanevsky and L.A. Beketayeva, J. Power Sources, 26, 427 (1989); doi:10.1016/0378-7753(89)80158-2.
- K.A. Klinedinst, J. Electrochem. Soc., 132, 2044 (1985); doi:10.1149/1.2114287.
References
D. Linden, Lithium Cells: Handbook of Batteries and Fuel Cells, McGraw Hill Book Co., New York, pp. 11-1-11-90 (1984).
A.N. Dey and P. Bro, In ed.: D.H. Collins, Power Sources: Primary Li/SOCl2 Cells III, Academic Press, London, Vol. 6, p. 493 (1977).
A.N. Dey and R.W. Holmes, J. Electrochem. Soc., 127, 775 (1980); doi:10.1149/1.2129756.
J.A. Christopulos and S. Gilman, In Proceedings of the 10 Intersociety Energy Conversion Engineering Conferences, IEEE publisher, DE, p. 437 (1975).
D. Carmier, C. Vix-Guterl and J. Lahaye, J. Power Sources, 103, 237 (2002); doi:10.1016/S0378-7753(01)00870-9.
D. Carmier, C. Vix-Guterl and J. Lahaye, Carbon, 39, 2181 (2001); doi:10.1016/S0008-6223(01)00043-4.
D. Carmier, C. Vix-Guterl and J. Lahaye, Carbon, 39, 2187 (2001); doi:10.1016/S0008-6223(01)00044-6.
http://www.vitzrocell.com/product/e_pr_01.php.
V.S. Bagotzky, V.E. Kazarinov, Y.M. Vol’fkovich, L.S. Kanevsky and L.A. Beketayeva, J. Power Sources, 26, 427 (1989); doi:10.1016/0378-7753(89)80158-2.
K.A. Klinedinst, J. Electrochem. Soc., 132, 2044 (1985); doi:10.1149/1.2114287.