Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Carbon Dioxide Reforming of Methane Over Bimetallic Co-X/Activated Carbon Catalysts (X = Ni, Cu, Fe, Mg, Ca)
Corresponding Author(s) : Guojie Zhang
Asian Journal of Chemistry,
Vol. 26 No. 8 (2014): Vol 26 Issue 8
Abstract
Carbon dioxide reforming of methane has been studied over Co/activated carbon catalysts promoted with different metal additives (Ni, Cu, Mg, Ca, Fe) aiming to improve the performance of the catalysts and increase their resistance to coking. It was found that the type of the promoter significantly affected the metal dispersion properties and catalytic performances of Co/activated carbon catalysts in the temperature range of 750-850 ºC. Nickel doped Co/activated carbon displayed the highest activity among all the catalyst. This is mainly result due to nickel-cobalt formation alloy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shen, Z.Z. Wang, H.W. Yang and Z.Z. Wang, Energy Fuels, 21, 3588 (2007); doi:10.1021/ef700217j.
- Ş. Özkara-Aydinoglu, E. Özensoy and A.E. Aksoylu, Int. J. Hydrogen Energy, 34, 9711 (2009); doi:10.1016/j.ijhydene.2009.09.005.
- M.C.J. Bradford and M.A. Vannice, J. Catal., 173, 157 (1998); doi:10.1006/jcat.1997.1910.
- S.M. Stagg-Williams, F.B. Noronha, G. Fendley and D.E. Resasco, J. Catal., 194, 240 (2000); doi:10.1006/jcat.2000.2939.
- A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature, 352, 225 (1991); doi:10.1038/352225a0.
- M. García-Diéguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia and L.J. Alemany, J. Catal., 270, 136 (2010); doi:10.1016/j.jcat.2009.12.010.
- Z. Hou, P. Chen, H. Fang, X. Zheng and T. Yashima, Int. J. Hydrogen Energy, 31, 555 (2006); doi:10.1016/j.ijhydene.2005.06.010.
- G. Zhang, Y. Dong, M. Feng, Y. Zhang, W. Zhao and H. Cao, Eng. Chem. J., 156, 519 (2010); doi:10.1016/j.cej.2009.04.005.
- B. Fidalgo and J.Á. Menéndez, Chin. J. Catal., 32, 207 (2011); doi:10.1016/S1872-2067(10)60166-0.
- L. Chen, Q. Zhu and R. Wu, Int. J. Hydrogen Energy, 36, 2128 (2011); doi:10.1016/j.ijhydene.2010.11.042.
References
J. Shen, Z.Z. Wang, H.W. Yang and Z.Z. Wang, Energy Fuels, 21, 3588 (2007); doi:10.1021/ef700217j.
Ş. Özkara-Aydinoglu, E. Özensoy and A.E. Aksoylu, Int. J. Hydrogen Energy, 34, 9711 (2009); doi:10.1016/j.ijhydene.2009.09.005.
M.C.J. Bradford and M.A. Vannice, J. Catal., 173, 157 (1998); doi:10.1006/jcat.1997.1910.
S.M. Stagg-Williams, F.B. Noronha, G. Fendley and D.E. Resasco, J. Catal., 194, 240 (2000); doi:10.1006/jcat.2000.2939.
A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature, 352, 225 (1991); doi:10.1038/352225a0.
M. García-Diéguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia and L.J. Alemany, J. Catal., 270, 136 (2010); doi:10.1016/j.jcat.2009.12.010.
Z. Hou, P. Chen, H. Fang, X. Zheng and T. Yashima, Int. J. Hydrogen Energy, 31, 555 (2006); doi:10.1016/j.ijhydene.2005.06.010.
G. Zhang, Y. Dong, M. Feng, Y. Zhang, W. Zhao and H. Cao, Eng. Chem. J., 156, 519 (2010); doi:10.1016/j.cej.2009.04.005.
B. Fidalgo and J.Á. Menéndez, Chin. J. Catal., 32, 207 (2011); doi:10.1016/S1872-2067(10)60166-0.
L. Chen, Q. Zhu and R. Wu, Int. J. Hydrogen Energy, 36, 2128 (2011); doi:10.1016/j.ijhydene.2010.11.042.