Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of NiO/Ni Nanocomposites Under Microwave Irradiation and Its Catalysis for Reduction of 4-Nitrophenol
Corresponding Author(s) : Weon Bae Ko
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
Nickel(II) hydroxide nanocomposites were synthesized by a reaction of nickel(II) acetate tetrahydrate [Ni(CH3COO)2·4H2O] and sodium hydroxide in ethanol under microwave irradiation for 5 min. The NiO/Ni nanocomposites were then prepared by calcining the Ni(OH)2 nanocomposites in an electric furnace at 700 °C for 2 h. The resulting heated products were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, the reduction of 4-nitrophenol with sodium borohydride and the NiO/Ni nanocomposites as a catalyst was examined by UV-visible spectrophotometer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.F. Liu, T. Zhu and J. Zhang, Univ. Chem., 16, 1 (2001).
- D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou and F.H. Wang, Powder Technol., 147, 113 (2004); doi:10.1016/j.powtec.2004.09.024.
- R.N. Bhargava, J. Lumin., 70, 85 (1996); doi:10.1016/0022-2313(96)00046-4.
- E.T. Goldburt, B. Kulkarni, R.N. Bhargava, J. Taylor and M. Libera, J. Lumin., 72-74, 190 (1997); doi:10.1016/S0022-2313(96)00237-2.
- R.W. Siegel, Nanostruct. Mater., 3, 1 (1993); doi:10.1016/0965-9773(93)90058-J.
- E.F. Hilinski, P.A. Lucas and Y. Wang, J. Chem. Phys., 89, 3435 (1988); doi:10.1063/1.454913.
- S.U. Son, I.K. Park, J. Park and T. Hyeon, Chem. Commun., 7, 778 (2004); doi:10.1039/B316147A.
- X.Y. Kong, Y. Ding and Z.L. Wang, J. Phys. Chem. B, 108, 570 (2004); doi:10.1021/jp036993f.
- C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzères and A. Peyre-Lavigne, Adv. Mater., 11, 61 (1999); doi:10.1002/(SICI)1521-4095(199901)11:1<61::AID-ADMA61>3.0.CO;2-U.
- Y. Wang, J.Y. Lee and T.C. Deivaraj, J. Mater. Chem., 14, 362 (2004); doi:10.1039/b312476b.
- L.G. Teoh, K.D. Li and Y.H. Liu, Nanosci. Nanotechnol. Lett., 3, 798 (2011); doi:10.1166/nnl.2011.1263.
- D. Monceau and B. Pieraggi, Oxid. Met., 50, 477 (1998); doi:10.1023/A:1018860909826.
- A.M. Huntz, J. Mater. Sci. Lett., 18, 1981 (1999); doi:10.1023/A:1006677631548.
- A.M. Huntz, B. Lefevre and F. Cassino, Mater. Sci. Eng. A, 290, 190 (2000); doi:10.1016/S0921-5093(00)00944-8.
- D. Levin and J.Y. Ying, Stud. Surf. Sci. Catal., 110, 367 (1997); doi:10.1016/S0167-2991(97)80997-4.
- M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J.- Itoh, M. Okada and T. Mouri, J. Power Sources, 74, 46 (1998); doi:10.1016/S0378-7753(98)00011-1.
- M.L. Curri, A. Agostiano, F. Mavelli and M. Della Monica, Mater. Sci. Eng. C, 22, 423 (2002); doi:10.1016/S0928-4931(02)00196-0.
- H.X. Yang, Q.F. Dong, X.H. Hu, X.P. Ai and S.X. Li, J. Power Sources, 79, 256 (1999); doi:10.1016/S0378-7753(99)00158-5.
- Y. Wu, G. Wu and X. Ni, J. Vac. Sci. Technol., 19, 228 (1999).
- Y. Wang and J. Ke, High Technol. Lett., 3, 92 (1997).
- E.L. Miller and R.E. Rocheleau, J. Electrochem. Soc., 144, 3072 (1997); doi:10.1149/1.1837961.
- Y. Wu, Y. He, T. Wu, T. Chen, W. Weng and H. Wan, Mater. Lett., 61, 3174 (2007); doi:10.1016/j.matlet.2006.11.018.
- S. M. Karadeniz, A. E. Ekinci, F. N. Tuzluca and M. Ertugrul, Asian J. Chem., 24, 1765 (2012).
- C. Natarajan, H. Matsumoto and G. Nogami, J. Electrochem. Soc., 144, 121 (1997); doi:10.1149/1.1837373.
- R. Mariappan and S. Mahalingam, Asian J. Chem., 25, 3081 (2013); doi:10.14233/ajchem.2013.13524.
- T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, Colloids Surf. A Physicochem. Eng. Asp., 296, 222 (2007); doi:10.1016/j.colsurfa.2006.09.048.
- X.F. Li, A. Dhanabalan and C.L. Wang, J. Power Sources, 196, 9625 (2011); doi:10.1016/j.jpowsour.2011.06.097.
- K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam and N.V. Jaya, J. Alloys Comp., 509, 181 (2011); doi:10.1016/j.jallcom.2010.09.033.
- S. Farhadi and Z. Roostaei-Zaniyani, Polyhedron, 30, 1244 (2011); doi:10.1016/j.poly.2011.01.028.
- S.K. Hong, J.H. Lee, J.M. Kim, M.H. Kwon and W.B. Ko, J. Nanosci. Nanotechnol., 11, 593 (2011); doi:10.1166/jnn.2011.3212; doi:10.1166/jnn.2011.3213.
- J.H. Lee, S.K. Hong and W.B. Ko, Asian J. Chem., 23, 2347 (2011).
References
Z.F. Liu, T. Zhu and J. Zhang, Univ. Chem., 16, 1 (2001).
D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou and F.H. Wang, Powder Technol., 147, 113 (2004); doi:10.1016/j.powtec.2004.09.024.
R.N. Bhargava, J. Lumin., 70, 85 (1996); doi:10.1016/0022-2313(96)00046-4.
E.T. Goldburt, B. Kulkarni, R.N. Bhargava, J. Taylor and M. Libera, J. Lumin., 72-74, 190 (1997); doi:10.1016/S0022-2313(96)00237-2.
R.W. Siegel, Nanostruct. Mater., 3, 1 (1993); doi:10.1016/0965-9773(93)90058-J.
E.F. Hilinski, P.A. Lucas and Y. Wang, J. Chem. Phys., 89, 3435 (1988); doi:10.1063/1.454913.
S.U. Son, I.K. Park, J. Park and T. Hyeon, Chem. Commun., 7, 778 (2004); doi:10.1039/B316147A.
X.Y. Kong, Y. Ding and Z.L. Wang, J. Phys. Chem. B, 108, 570 (2004); doi:10.1021/jp036993f.
C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzères and A. Peyre-Lavigne, Adv. Mater., 11, 61 (1999); doi:10.1002/(SICI)1521-4095(199901)11:1<61::AID-ADMA61>3.0.CO;2-U.
Y. Wang, J.Y. Lee and T.C. Deivaraj, J. Mater. Chem., 14, 362 (2004); doi:10.1039/b312476b.
L.G. Teoh, K.D. Li and Y.H. Liu, Nanosci. Nanotechnol. Lett., 3, 798 (2011); doi:10.1166/nnl.2011.1263.
D. Monceau and B. Pieraggi, Oxid. Met., 50, 477 (1998); doi:10.1023/A:1018860909826.
A.M. Huntz, J. Mater. Sci. Lett., 18, 1981 (1999); doi:10.1023/A:1006677631548.
A.M. Huntz, B. Lefevre and F. Cassino, Mater. Sci. Eng. A, 290, 190 (2000); doi:10.1016/S0921-5093(00)00944-8.
D. Levin and J.Y. Ying, Stud. Surf. Sci. Catal., 110, 367 (1997); doi:10.1016/S0167-2991(97)80997-4.
M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J.- Itoh, M. Okada and T. Mouri, J. Power Sources, 74, 46 (1998); doi:10.1016/S0378-7753(98)00011-1.
M.L. Curri, A. Agostiano, F. Mavelli and M. Della Monica, Mater. Sci. Eng. C, 22, 423 (2002); doi:10.1016/S0928-4931(02)00196-0.
H.X. Yang, Q.F. Dong, X.H. Hu, X.P. Ai and S.X. Li, J. Power Sources, 79, 256 (1999); doi:10.1016/S0378-7753(99)00158-5.
Y. Wu, G. Wu and X. Ni, J. Vac. Sci. Technol., 19, 228 (1999).
Y. Wang and J. Ke, High Technol. Lett., 3, 92 (1997).
E.L. Miller and R.E. Rocheleau, J. Electrochem. Soc., 144, 3072 (1997); doi:10.1149/1.1837961.
Y. Wu, Y. He, T. Wu, T. Chen, W. Weng and H. Wan, Mater. Lett., 61, 3174 (2007); doi:10.1016/j.matlet.2006.11.018.
S. M. Karadeniz, A. E. Ekinci, F. N. Tuzluca and M. Ertugrul, Asian J. Chem., 24, 1765 (2012).
C. Natarajan, H. Matsumoto and G. Nogami, J. Electrochem. Soc., 144, 121 (1997); doi:10.1149/1.1837373.
R. Mariappan and S. Mahalingam, Asian J. Chem., 25, 3081 (2013); doi:10.14233/ajchem.2013.13524.
T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, Colloids Surf. A Physicochem. Eng. Asp., 296, 222 (2007); doi:10.1016/j.colsurfa.2006.09.048.
X.F. Li, A. Dhanabalan and C.L. Wang, J. Power Sources, 196, 9625 (2011); doi:10.1016/j.jpowsour.2011.06.097.
K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam and N.V. Jaya, J. Alloys Comp., 509, 181 (2011); doi:10.1016/j.jallcom.2010.09.033.
S. Farhadi and Z. Roostaei-Zaniyani, Polyhedron, 30, 1244 (2011); doi:10.1016/j.poly.2011.01.028.
S.K. Hong, J.H. Lee, J.M. Kim, M.H. Kwon and W.B. Ko, J. Nanosci. Nanotechnol., 11, 593 (2011); doi:10.1166/jnn.2011.3212; doi:10.1166/jnn.2011.3213.
J.H. Lee, S.K. Hong and W.B. Ko, Asian J. Chem., 23, 2347 (2011).