Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effects of Precursor on Preparation and Properties of Nano-Crystalline Hopcalite Particles
Corresponding Author(s) : N.M. Deraz
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
X-ray diffraction techniques used to determine the structural properties of hopcalite nanoparticles. A mixture of hopcalite and its constituents can be prepared by ceramic method at 800 °C for 5 h. The spinel structure of hopcalite (Cu-Mn-O) confirms by infrared measurements. The copper precursors affect the formation and different properties of hopcalite. Solid state reaction between CuO resulted from copper nitrate with Mn2O3 obtained from manganese carbonate brought about formation of spinel Cu1.5Mn1.5O4 compound with subsequent formation of both Mn2O3 and CuO. On the other hand, using of copper chloride as a source of CuO led to formation of both CuMn2O4 and Mn2O3. The results showed that the change of precursor led to different changes in the structural properties of hopcalite solid including the crystallite size, lattice constant, unit cell volume, X-ray density, the distance between the reacting ions, ionic radii and bond lengths on tetrahedral and octahedral sites involved in the spinel structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.A. Jones and H.S. Taylor, J. Phys. Chem., 27, 623 (1922); doi:10.1021/j150232a002.
- I. Spassova, M. Khristova, D. Panayotov and D. Mehandjiev, J. Catal., 185, 43 (1999); doi:10.1006/jcat.1998.2347.
- M. Trari, J. Topfer, P. Dordor, J.C. Grenier, M. Pouchard and J.P. Doumerc, J. Solid State Chem., 178, 2751 (2005); doi:10.1016/j.jssc.2005.06.009.
- C. Maunders, B.E. Martin, P. Wei, A. Petric and G.A. Botton, Solid State Ionics, 179, 718 (2008); doi:10.1016/j.ssi.2008.04.029.
- B.E. Martin and A. Petric, J. Phys. Chem. Solids, 68, 2262 (2007); doi:10.1016/j.jpcs.2007.06.019.
- C. Yoon and D.L. Cocke, Appl. Surf. Sci., 31, 118 (1988); doi:10.1016/0169-4332(88)90027-X.
- F. Klauer, Paper presented at 1967 Mine Rescue Superintendents Conference (National Coal Board), Published by the Auergesellschaft GMBH, Berlin (1967).
- A.A. Mirzaei, H.R. Shaterian and M. Kaykhaii, Appl. Surf. Sci., 239, 246 (2005); doi:10.1016/j.apsusc.2004.05.274.
- N.Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993); doi:10.1111/j.1151-2916.1993.tb03645.x.
- B.C.H. Steele and A. Heinzel, Nature, 414, 345 (2001); doi:10.1038/35104620.
- E.D. Wachsman, C.A. Marlowe and K.T. Lee, Energy Environ. Sci., 5, 5498 (2012); doi:10.1039/c1ee02445k.
- W.Z. Zhu and S.C. Deevi, Mater. Sci. Eng. A, 348, 227 (2003); doi:10.1016/S0921-5093(02)00736-0.
- A.J. Jacobson, Chem. Mater., 22, 660 (2010); doi:10.1021/cm902640j.
- Z.G. Yang, G.G. Xia, G.D. Maupin and J.W. Stevenson, Surf. Coat. Technol., 201, 4476 (2006); doi:10.1016/j.surfcoat.2006.08.082.
- P. Wei, X.H. Deng, M.R. Bateni and A. Petric, Corrosion, 63, 529 (2007); doi:10.5006/1.3278404.
- Z.G. Yang, K.S. Weil, D.M. Paxton and J.W. Stevenson, J. Electrochem. Soc., 150, A1188 (2003); doi:10.1149/1.1595659.
- N. Shaigan, W. Qu, D.G. Ivey and W.X. Chen, J. Power Sources, 195, 1529 (2010); doi:10.1016/j.jpowsour.2009.09.069.
- Q. Zhang, B.E. Martin and A. Petric, J. Mater. Chem., 18, 4341 (2008); doi:10.1039/b808162j.
- X.S. Xin, S.R. Wang, J.Q. Qian, C.C. Lin, Z.L. Zhan and T.L. Wen, Int. J. Hydrogen Energy, 37, 471 (2012); doi:10.1016/j.ijhydene.2011.08.111.
- S.R. Akanda, M.E. Walter, N.J. Kidner and M.M. Seabaugh, J. Power Sources, 210, 254 (2012); doi:10.1016/j.jpowsour.2012.03.008.
- Z.G. Yang, G.G. Xia, X.H. Li and J.W. Stevenson, Int. J. Hydrogen Energy, 32, 3648 (2007); doi:10.1016/j.ijhydene.2006.08.048.
- M.K. Mahapatra and K. Lu, Int. J. Hydrogen Energy, 35, 11908 (2010); doi:10.1016/j.ijhydene.2010.08.066.
- A.A. Mirzaei, H.R. Shaterian, M. Habibi, G.J. Hutchings and S.H. Taylor, Appl. Catal. A, 253, 499 (2003); doi:10.1016/S0926-860X(03)00563-5.
- M. Jobbágy, F. Mariño, B. Schönbrod, G. Baronetti and M. Laborde, Chem. Mater., 18, 1945 (2006); doi:10.1021/cm052437h.
- B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesly Publishing Co. Inc., Ch. 14 (1976).
- H. Kavas, Z. Durmus, M. S¸enel, S. Kazan, A. Baykal and M.S. Toprak, Polyhedron, 29, 1375 (2010); doi:10.1016/j.poly.2009.12.034.
- W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu and C.L. Zheng, Adv. Mater., 14, 837 (2002); doi:10.1002/1521-4095(20020605)14:11<837::AID-ADMA837>3.0.CO;2-4.
- N. Gupta, A. Verma, S.C. Kashyap and D.C. Dube, J. Magn. Magn. Mater., 308, 137 (2007); doi:10.1016/j.jmmm.2006.05.015.
- G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui and S.H. Taylor, Catal. Lett., 42, 21 (1996); doi:10.1007/BF00814462.
- N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); doi:10.1016/j.jaap.2012.04.006.
- N.M. Deraz and M.G. Moustafa Fouda, Int. J. Electrochem. Soc., 8, 2682 (2013).
- N.M. Deraz and M.G. Moustafa Fouda, Int. J. Electrochem. Soc., 8, 2756 (2013).
- G. Blasse, J. Phys. Chem. Solids, 27, 383 (1966); doi:10.1016/0022-3697(66)90045-X.
- R. Buhl, J. Phys. Chem. Solids, 30, 805 (1969); doi:10.1016/0022-3697(69)90275-3.
- G.G. Robbrecht and C.M. Henriet-Iserentant, Phys. Status Solidi, 41, K43 (1970); doi:10.1002/pssb.19700410160.
- A. Bielanski, K. Dyrek, Z. Kluz, J. Slozynski and T. Tombiasz, Bull. Acad. Pol. Sci., 9, 657 (1964).
- R.E. Vandenberghe, G.G. Robbrecht and V.A.M. Brabers, Mater. Res. Bull., 8, 571 (1973); doi:10.1016/0025-5408(73)90134-7.
- F. Li, L. Zhang, D.G. Evans and X. Duan, Colloids Surf. A, 244, 169 (2004); doi:10.1016/j.colsurfa.2004.06.022.
- E. Elbadraoui, J.L. Baudour, F. Bouree, B. Gillot, S. Fritsch and A. Rousset, Solid State Ionics, 93, 219 (1997); doi:10.1016/S0167-2738(96)00559-0.
- T. Battault, R. Legros and A. Rousset, J. Eur. Ceram. Soc., 15, 1141 (1995); doi:10.1016/0955-2219(95)00088-C.
- A. Rousset, Solid State Ionics, 84, 293 (1996); doi:10.1016/0167-2738(96)00079-3.
- C. Drouet, C. Laberty, J.L.G. Fierro, P. Alphonse and A. Rousset, Int. J. Inorg. Mater., 2, 419 (2000); doi:10.1016/S1466-6049(00)00047-7.
- A. Navrotsky and O.J. Kleppa, J. Inorg. Nucl. Chem., 29, 2701 (1967); doi:10.1016/0022-1902(67)80008-3.
References
H.A. Jones and H.S. Taylor, J. Phys. Chem., 27, 623 (1922); doi:10.1021/j150232a002.
I. Spassova, M. Khristova, D. Panayotov and D. Mehandjiev, J. Catal., 185, 43 (1999); doi:10.1006/jcat.1998.2347.
M. Trari, J. Topfer, P. Dordor, J.C. Grenier, M. Pouchard and J.P. Doumerc, J. Solid State Chem., 178, 2751 (2005); doi:10.1016/j.jssc.2005.06.009.
C. Maunders, B.E. Martin, P. Wei, A. Petric and G.A. Botton, Solid State Ionics, 179, 718 (2008); doi:10.1016/j.ssi.2008.04.029.
B.E. Martin and A. Petric, J. Phys. Chem. Solids, 68, 2262 (2007); doi:10.1016/j.jpcs.2007.06.019.
C. Yoon and D.L. Cocke, Appl. Surf. Sci., 31, 118 (1988); doi:10.1016/0169-4332(88)90027-X.
F. Klauer, Paper presented at 1967 Mine Rescue Superintendents Conference (National Coal Board), Published by the Auergesellschaft GMBH, Berlin (1967).
A.A. Mirzaei, H.R. Shaterian and M. Kaykhaii, Appl. Surf. Sci., 239, 246 (2005); doi:10.1016/j.apsusc.2004.05.274.
N.Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993); doi:10.1111/j.1151-2916.1993.tb03645.x.
B.C.H. Steele and A. Heinzel, Nature, 414, 345 (2001); doi:10.1038/35104620.
E.D. Wachsman, C.A. Marlowe and K.T. Lee, Energy Environ. Sci., 5, 5498 (2012); doi:10.1039/c1ee02445k.
W.Z. Zhu and S.C. Deevi, Mater. Sci. Eng. A, 348, 227 (2003); doi:10.1016/S0921-5093(02)00736-0.
A.J. Jacobson, Chem. Mater., 22, 660 (2010); doi:10.1021/cm902640j.
Z.G. Yang, G.G. Xia, G.D. Maupin and J.W. Stevenson, Surf. Coat. Technol., 201, 4476 (2006); doi:10.1016/j.surfcoat.2006.08.082.
P. Wei, X.H. Deng, M.R. Bateni and A. Petric, Corrosion, 63, 529 (2007); doi:10.5006/1.3278404.
Z.G. Yang, K.S. Weil, D.M. Paxton and J.W. Stevenson, J. Electrochem. Soc., 150, A1188 (2003); doi:10.1149/1.1595659.
N. Shaigan, W. Qu, D.G. Ivey and W.X. Chen, J. Power Sources, 195, 1529 (2010); doi:10.1016/j.jpowsour.2009.09.069.
Q. Zhang, B.E. Martin and A. Petric, J. Mater. Chem., 18, 4341 (2008); doi:10.1039/b808162j.
X.S. Xin, S.R. Wang, J.Q. Qian, C.C. Lin, Z.L. Zhan and T.L. Wen, Int. J. Hydrogen Energy, 37, 471 (2012); doi:10.1016/j.ijhydene.2011.08.111.
S.R. Akanda, M.E. Walter, N.J. Kidner and M.M. Seabaugh, J. Power Sources, 210, 254 (2012); doi:10.1016/j.jpowsour.2012.03.008.
Z.G. Yang, G.G. Xia, X.H. Li and J.W. Stevenson, Int. J. Hydrogen Energy, 32, 3648 (2007); doi:10.1016/j.ijhydene.2006.08.048.
M.K. Mahapatra and K. Lu, Int. J. Hydrogen Energy, 35, 11908 (2010); doi:10.1016/j.ijhydene.2010.08.066.
A.A. Mirzaei, H.R. Shaterian, M. Habibi, G.J. Hutchings and S.H. Taylor, Appl. Catal. A, 253, 499 (2003); doi:10.1016/S0926-860X(03)00563-5.
M. Jobbágy, F. Mariño, B. Schönbrod, G. Baronetti and M. Laborde, Chem. Mater., 18, 1945 (2006); doi:10.1021/cm052437h.
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesly Publishing Co. Inc., Ch. 14 (1976).
H. Kavas, Z. Durmus, M. S¸enel, S. Kazan, A. Baykal and M.S. Toprak, Polyhedron, 29, 1375 (2010); doi:10.1016/j.poly.2009.12.034.
W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu and C.L. Zheng, Adv. Mater., 14, 837 (2002); doi:10.1002/1521-4095(20020605)14:11<837::AID-ADMA837>3.0.CO;2-4.
N. Gupta, A. Verma, S.C. Kashyap and D.C. Dube, J. Magn. Magn. Mater., 308, 137 (2007); doi:10.1016/j.jmmm.2006.05.015.
G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui and S.H. Taylor, Catal. Lett., 42, 21 (1996); doi:10.1007/BF00814462.
N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 97, 55 (2012); doi:10.1016/j.jaap.2012.04.006.
N.M. Deraz and M.G. Moustafa Fouda, Int. J. Electrochem. Soc., 8, 2682 (2013).
N.M. Deraz and M.G. Moustafa Fouda, Int. J. Electrochem. Soc., 8, 2756 (2013).
G. Blasse, J. Phys. Chem. Solids, 27, 383 (1966); doi:10.1016/0022-3697(66)90045-X.
R. Buhl, J. Phys. Chem. Solids, 30, 805 (1969); doi:10.1016/0022-3697(69)90275-3.
G.G. Robbrecht and C.M. Henriet-Iserentant, Phys. Status Solidi, 41, K43 (1970); doi:10.1002/pssb.19700410160.
A. Bielanski, K. Dyrek, Z. Kluz, J. Slozynski and T. Tombiasz, Bull. Acad. Pol. Sci., 9, 657 (1964).
R.E. Vandenberghe, G.G. Robbrecht and V.A.M. Brabers, Mater. Res. Bull., 8, 571 (1973); doi:10.1016/0025-5408(73)90134-7.
F. Li, L. Zhang, D.G. Evans and X. Duan, Colloids Surf. A, 244, 169 (2004); doi:10.1016/j.colsurfa.2004.06.022.
E. Elbadraoui, J.L. Baudour, F. Bouree, B. Gillot, S. Fritsch and A. Rousset, Solid State Ionics, 93, 219 (1997); doi:10.1016/S0167-2738(96)00559-0.
T. Battault, R. Legros and A. Rousset, J. Eur. Ceram. Soc., 15, 1141 (1995); doi:10.1016/0955-2219(95)00088-C.
A. Rousset, Solid State Ionics, 84, 293 (1996); doi:10.1016/0167-2738(96)00079-3.
C. Drouet, C. Laberty, J.L.G. Fierro, P. Alphonse and A. Rousset, Int. J. Inorg. Mater., 2, 419 (2000); doi:10.1016/S1466-6049(00)00047-7.
A. Navrotsky and O.J. Kleppa, J. Inorg. Nucl. Chem., 29, 2701 (1967); doi:10.1016/0022-1902(67)80008-3.