Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Bioactivity of Resveratrol Analogues
Corresponding Author(s) : Erbing Hua
Asian Journal of Chemistry,
Vol. 26 No. 7 (2014): Vol 26 Issue 7
Abstract
It has been reported that resveratrol enhanced SIRT1 expression and significantly mimicked calorie restriction by stimulating Sir2 which is the most homologic homologue of SIRT1 of mammalian. A series of novel resveratrol derivatives were designed and synthesized as novel SIRT1 activator candidates. These synthesized compounds were characterized by spectral (1H NMR) analysis and examined for their Sir2 activation against yeast parental strain-BY4743 at a concentration of 100 μM/L by Bioscreen C MBR machine. Several compounds showed a promising Sir2 activation activity compared with resveratrol. Meanwhile, the structure-activity relationships with Sirt2 activation activities were also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.L. Richard, Arch. Mal. Coeur Vaiss., 80, 21 (1987).
- M.J. Takaoka, J. Faculty Sci. Hokkaido Imperial Univ., 3, 1 (1940).
- R.H. Wang, K. Sengupta, C. Li, H.S. Kim, L. Cao, C. Xiao, S. Kim, X. Xu, Y. Zheng, B. Chilton, R. Jia, Z.M. Zheng, E. Appella, X.W. Wang, T. Ried and C.X. Deng, Cancer Cell, 14, 323 (2008); doi:10.1016/j.ccr.2008.09.001.
- H.I. Rocha-Gonzalez, M. Ambriz-Tututi and V. Granados-Soto, Resveratrol. CNS Neurosci. Ther., 14, 234 (2008); doi:10.1111/j.1755-5949.2008.00045.x.
- L.M. Vieira de Almeida, C.C. Piñeiro, M.C. Leite, G. Brolese, R.B. Leal, C. Gottfried and C.A. Gonçalves, Neurochem. Res., 33, 15 (2008).
- H.A. Ali, K. Kondo and Y. Tsuda, Chem. Pharm. Bull. (Tokyo), 40, 1130 (1992); doi:10.1248/cpb.40.1130.
- K. Thakkar, R.L. Geahlen and M. Cushman, J. Med. Chem., 36, 2950 (1993); doi:10.1021/jm00072a015.
- M. Murias, N. Handler, T. Erker, K. Pleban, G. Ecker, P. Saiko, T. Szekeres and W. Jäger, Bioorg. Med. Chem., 12, 5571 (2004); doi:10.1016/j.bmc.2004.08.008.
- P. Kopp, Eur. J. Endocrinol., 138, 619 (1998); doi:10.1530/eje.0.1380619.
- M. Jang and J.M. Pezzuto, Drugs Exp. Clin. Res., 25, 65 (1999).
- L.A. Stivala, M. Savio and F. Carafoli, J. Biol. Chem., 276, 22586 (2001); doi:10.1074/jbc.M101846200.
- F. Daroch, M. Hoeneisen and C.L. Gonzalez, Microbios, 104, 85 (2001).
- W.B. Wang, H.C. Lai, P.R. Hsueh, R.Y. Chiou, S.B. Lin and S.J. Liaw, J. Med. Microbiol., 55, 1313 (2006).
- S.F. Zaidi, K. Ahmed, T. Yamamoto, T. Kondo, K. Usmanghani, M. Kadowaki and T. Sugiyama, Biol. Pharm. Bull., 32, 1935 (2009).
- H. Arichi, Y. Kimura, H. Okuda, K. Baba, M. Kozawa and S. Arichi, Chem. Pharm. Bull. (Tokyo), 30, 1766 (1982); doi:10.1248/cpb.30.1766.
- C.R. Pace-Asciak, S. Hahn, E.P. Diamandis, G. Soleas and D.M. Goldberg, Clin. Chim. Acta, 235, 219 (1996).
- C.K. Chen, M.-H. Wang and I.-J. Chen, Gen. Pharmacol., 27, 629 (1996); doi:10.1016/0306-3623(95)02089-6.
- R.A. Frye, Biochem. Biophys. Res. Commun., 273, 793 (2000).
- K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer and D.A. Sinclair, Nature, 425, 191 (2003); doi:10.1038/nature01960.
- K.J. Bitterman, O. Medvedik and D.A. Sinclair, Microbiol. Mol. Biol. Rev., 67, 376 (2003); doi:10.1128/MMBR.67.3.376-399.2003.
- S.M. Jazwinski, Exp. Gerontol., 34, 1 (1999); doi:10.1016/S0531-5565(98)00053-9.
- M. Kaeberlein, in ed.: P.M. Conn, Longevity and Aging in the Budding Yeast. In Handbook of Models for Human Aging, Elvesier Press, Boston, pp. 109-120 (2006)..
- P.W. Piper, Yeast, 23, 215 (2006); doi:10.1002/yea.1354.
- B.K. Kennedy, N.R. Austriaco and J. Zhang, Cell, 80, 485 (1995); doi:10.1016/0092-8674(95)90499-9.
- M. Kaeberlein, M. McVey and L. Guarente, Genes Dev., 13, 2570 (1999); doi:10.1101/gad.13.19.2570.
- A.K. Bhattacharya and G. Thyagarajan, Chem. Rev., 81, 415 (1981); doi:10.1021/cr00044a004.
- H.J. Cristau, F. Darviche, E. Torreilles and J.-M. Fabre, Tetrahedron Lett., 39, 2103 (1998); doi:10.1016/S0040-4039(98)00061-6.
- T. Nagasaki, M. Ukon, S. Arimori and S. Shinkai, J. Chem. Soc., Chem. Commun., 608 (1992); doi:10.1039/C39920000608.
References
J.L. Richard, Arch. Mal. Coeur Vaiss., 80, 21 (1987).
M.J. Takaoka, J. Faculty Sci. Hokkaido Imperial Univ., 3, 1 (1940).
R.H. Wang, K. Sengupta, C. Li, H.S. Kim, L. Cao, C. Xiao, S. Kim, X. Xu, Y. Zheng, B. Chilton, R. Jia, Z.M. Zheng, E. Appella, X.W. Wang, T. Ried and C.X. Deng, Cancer Cell, 14, 323 (2008); doi:10.1016/j.ccr.2008.09.001.
H.I. Rocha-Gonzalez, M. Ambriz-Tututi and V. Granados-Soto, Resveratrol. CNS Neurosci. Ther., 14, 234 (2008); doi:10.1111/j.1755-5949.2008.00045.x.
L.M. Vieira de Almeida, C.C. Piñeiro, M.C. Leite, G. Brolese, R.B. Leal, C. Gottfried and C.A. Gonçalves, Neurochem. Res., 33, 15 (2008).
H.A. Ali, K. Kondo and Y. Tsuda, Chem. Pharm. Bull. (Tokyo), 40, 1130 (1992); doi:10.1248/cpb.40.1130.
K. Thakkar, R.L. Geahlen and M. Cushman, J. Med. Chem., 36, 2950 (1993); doi:10.1021/jm00072a015.
M. Murias, N. Handler, T. Erker, K. Pleban, G. Ecker, P. Saiko, T. Szekeres and W. Jäger, Bioorg. Med. Chem., 12, 5571 (2004); doi:10.1016/j.bmc.2004.08.008.
P. Kopp, Eur. J. Endocrinol., 138, 619 (1998); doi:10.1530/eje.0.1380619.
M. Jang and J.M. Pezzuto, Drugs Exp. Clin. Res., 25, 65 (1999).
L.A. Stivala, M. Savio and F. Carafoli, J. Biol. Chem., 276, 22586 (2001); doi:10.1074/jbc.M101846200.
F. Daroch, M. Hoeneisen and C.L. Gonzalez, Microbios, 104, 85 (2001).
W.B. Wang, H.C. Lai, P.R. Hsueh, R.Y. Chiou, S.B. Lin and S.J. Liaw, J. Med. Microbiol., 55, 1313 (2006).
S.F. Zaidi, K. Ahmed, T. Yamamoto, T. Kondo, K. Usmanghani, M. Kadowaki and T. Sugiyama, Biol. Pharm. Bull., 32, 1935 (2009).
H. Arichi, Y. Kimura, H. Okuda, K. Baba, M. Kozawa and S. Arichi, Chem. Pharm. Bull. (Tokyo), 30, 1766 (1982); doi:10.1248/cpb.30.1766.
C.R. Pace-Asciak, S. Hahn, E.P. Diamandis, G. Soleas and D.M. Goldberg, Clin. Chim. Acta, 235, 219 (1996).
C.K. Chen, M.-H. Wang and I.-J. Chen, Gen. Pharmacol., 27, 629 (1996); doi:10.1016/0306-3623(95)02089-6.
R.A. Frye, Biochem. Biophys. Res. Commun., 273, 793 (2000).
K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer and D.A. Sinclair, Nature, 425, 191 (2003); doi:10.1038/nature01960.
K.J. Bitterman, O. Medvedik and D.A. Sinclair, Microbiol. Mol. Biol. Rev., 67, 376 (2003); doi:10.1128/MMBR.67.3.376-399.2003.
S.M. Jazwinski, Exp. Gerontol., 34, 1 (1999); doi:10.1016/S0531-5565(98)00053-9.
M. Kaeberlein, in ed.: P.M. Conn, Longevity and Aging in the Budding Yeast. In Handbook of Models for Human Aging, Elvesier Press, Boston, pp. 109-120 (2006)..
P.W. Piper, Yeast, 23, 215 (2006); doi:10.1002/yea.1354.
B.K. Kennedy, N.R. Austriaco and J. Zhang, Cell, 80, 485 (1995); doi:10.1016/0092-8674(95)90499-9.
M. Kaeberlein, M. McVey and L. Guarente, Genes Dev., 13, 2570 (1999); doi:10.1101/gad.13.19.2570.
A.K. Bhattacharya and G. Thyagarajan, Chem. Rev., 81, 415 (1981); doi:10.1021/cr00044a004.
H.J. Cristau, F. Darviche, E. Torreilles and J.-M. Fabre, Tetrahedron Lett., 39, 2103 (1998); doi:10.1016/S0040-4039(98)00061-6.
T. Nagasaki, M. Ukon, S. Arimori and S. Shinkai, J. Chem. Soc., Chem. Commun., 608 (1992); doi:10.1039/C39920000608.