Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microstructure and Spectroscopic Properties of AMoO4 (A = Ca, Ba) Particles Synthesized via Cyclic Microwave-Assisted Metathetic Route
Corresponding Author(s) : Chang Sung Lim
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
AMoO4 (A=Ca, Ba) particles have been successfully synthesized via cyclic microwave-assisted metathetic route in ethylene glycol followed by further heat-treatment. The AMoO4 (A=Ca, Ba) particles were well crystallized after heat-treatment at 400-600 °C for 3 h. The microstructures exhibited fine morphologies with sizes of 0.5-1 and 1.5-2 μm for the CaMoO4 and BaMoO4 particles, respectively. The synthesized AMoO4 (A=Ca, Ba) particles were characterized by X-ray diffraction, scanning electron microscopy. Other spectroscopic properties were also examined using photoluminescence emission measurements and Raman spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj and O.Y. Khyzhun, J. Alloys Comp., 496, 61 (2010); doi:10.1016/j.jallcom.2010.02.107.
- L. Zhen, W.S. Wang, C.Y. Xu, W.Z. Shao, M.M. Ye and Z.L. Chen, Scr. Mater., 58, 461 (2008); doi:10.1016/j.scriptamat.2007.10.038.
- R.N. Singh, J.P. Singh and A. Singh, Int. J. Hydrogen Energy, 33, 4260 (2008); doi:10.1016/j.ijhydene.2008.06.008.
- X. Zhao, T.L.Y. Cheung, Y. Xi, K.C. Chung, D.H.L. Ng and J. Yu, J. Mater. Sci., 42, 6716 (2007); doi:10.1007/s10853-007-1499-8.
- P. Yu, J. Bi, D.J. Gao, Q. Xiao, L.P. Chen, X.L. Jin and Z.N. Yang, J. Electroceram., 21, 184 (2008); doi:10.1007/s10832-007-9109-3.
- X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu and Y. Qian, J. Solid State Chem., 180, 3288 (2007); doi:10.1016/j.jssc.2007.07.010.
- G. Zhang, S. Yu, Y. Yang, W. Jiang, S. Zhang and B. Huang, J. Cryst. Growth, 312, 1866 (2010); doi:10.1016/j.jcrysgro.2010.02.022.
- K. Eda, Y. Kato, Y. Ohshiro, T. Sugitani and M.S. Whittingham, J. Solid State Chem., 183, 1334 (2010); doi:10.1016/j.jssc.2010.04.009.
- J.T. Kloprogge, M.L. Weier, L.V. Duong and R.L. Frost, Mater. Chem. Phys., 88, 438 (2004); doi:10.1016/j.matchemphys.2004.08.013.
- L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, J.A. Varela, E. Longo and M.O. Orlandi, Particuology, 7, 353 (2009); doi:10.1016/j.partic.2009.05.002.
- J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh and K.B. Shim, J. Alloy. Comp., 390, 245 (2005); doi:10.1016/j.jallcom.2004.07.064.
- J.H. Ryu, J.-W. Yoon, C.S. Lim and K.B. Shim, Mater. Res. Bull., 40, 1468 (2005); doi:10.1016/j.materresbull.2005.04.032.
- J.H. Ryu, B.G. Choi, J.-W. Yoon, K.B. Shim, K. Machi and K. Hamada, J. Lumin., 124, 67 (2007); doi:10.1016/j.jlumin.2006.01.368.
- T. Thongtem, A. Phuruangrat and S. Thongtem, Mater. Lett., 62, 454 (2008); doi:10.1016/j.matlet.2007.05.059.
- T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
- C.S. Lim, Mater. Res. Bull., 47, 4220 (2012); doi:10.1016/j.materresbull.2012.09.029.
- C.S. Lim, Asian J. Chem., 25, 63 (2013); doi:10.14233/ajchem.2013.12636A..
- S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
- C.S. Lim, Mater. Chem. Phys., 131, 714 (2012); doi:10.1016/j.matchemphys.2011.10.039.
- D.A. Spassky, S.N. Ivanov, V.N. Kolobanov, V.V. Mikhailin, V.N. Zemskov, B.I. Zadneprovski and L.I. Potkin, Radiat. Meas., 38, 607 (2004); doi:10.1016/j.radmeas.2004.03.019.
- G.Y. Hong, B.S. Jeon, Y.K. Yoo and J.S. Yoo, J. Electrochem. Soc., 148, H161 (2001); doi:10.1149/1.1406496.
- K. Polak, M. Nikl, K. Nitsch, M. Kobayashi, M. Ishii, Y. Usuki and O. Jarolimek, J. Lumin., 72-74, 781 (1997); doi:10.1016/S0022-2313(97)00079-3.
- Y. Toyozawa and M. Inoue, J. Phys. Soc. Jpn., 21, 1663 (1966); doi:10.1143/JPSJ.21.1663.
- E.G. Reut, Izv. Akad. Nauk SSSR, Ser. Fiz., 43, 1186 (1979).
- V.B. Mikhailik, H. Kraus, D. Wahl and M.S. Mykhaylyk, Phys. Status Solid B, 242, R17 (2005); doi:10.1002/pssb.200409087.
- T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev, Opt. Mater., 15, 205 (2000); doi:10.1016/S0925-3467(00)00037-9.
- T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko and R.C. Powell, Opt. Mater., 11, 307 (1999); doi:10.1016/S0925-3467(98)00030-5.
References
S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj and O.Y. Khyzhun, J. Alloys Comp., 496, 61 (2010); doi:10.1016/j.jallcom.2010.02.107.
L. Zhen, W.S. Wang, C.Y. Xu, W.Z. Shao, M.M. Ye and Z.L. Chen, Scr. Mater., 58, 461 (2008); doi:10.1016/j.scriptamat.2007.10.038.
R.N. Singh, J.P. Singh and A. Singh, Int. J. Hydrogen Energy, 33, 4260 (2008); doi:10.1016/j.ijhydene.2008.06.008.
X. Zhao, T.L.Y. Cheung, Y. Xi, K.C. Chung, D.H.L. Ng and J. Yu, J. Mater. Sci., 42, 6716 (2007); doi:10.1007/s10853-007-1499-8.
P. Yu, J. Bi, D.J. Gao, Q. Xiao, L.P. Chen, X.L. Jin and Z.N. Yang, J. Electroceram., 21, 184 (2008); doi:10.1007/s10832-007-9109-3.
X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu and Y. Qian, J. Solid State Chem., 180, 3288 (2007); doi:10.1016/j.jssc.2007.07.010.
G. Zhang, S. Yu, Y. Yang, W. Jiang, S. Zhang and B. Huang, J. Cryst. Growth, 312, 1866 (2010); doi:10.1016/j.jcrysgro.2010.02.022.
K. Eda, Y. Kato, Y. Ohshiro, T. Sugitani and M.S. Whittingham, J. Solid State Chem., 183, 1334 (2010); doi:10.1016/j.jssc.2010.04.009.
J.T. Kloprogge, M.L. Weier, L.V. Duong and R.L. Frost, Mater. Chem. Phys., 88, 438 (2004); doi:10.1016/j.matchemphys.2004.08.013.
L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, J.A. Varela, E. Longo and M.O. Orlandi, Particuology, 7, 353 (2009); doi:10.1016/j.partic.2009.05.002.
J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh and K.B. Shim, J. Alloy. Comp., 390, 245 (2005); doi:10.1016/j.jallcom.2004.07.064.
J.H. Ryu, J.-W. Yoon, C.S. Lim and K.B. Shim, Mater. Res. Bull., 40, 1468 (2005); doi:10.1016/j.materresbull.2005.04.032.
J.H. Ryu, B.G. Choi, J.-W. Yoon, K.B. Shim, K. Machi and K. Hamada, J. Lumin., 124, 67 (2007); doi:10.1016/j.jlumin.2006.01.368.
T. Thongtem, A. Phuruangrat and S. Thongtem, Mater. Lett., 62, 454 (2008); doi:10.1016/j.matlet.2007.05.059.
T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
C.S. Lim, Mater. Res. Bull., 47, 4220 (2012); doi:10.1016/j.materresbull.2012.09.029.
C.S. Lim, Asian J. Chem., 25, 63 (2013); doi:10.14233/ajchem.2013.12636A..
S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
C.S. Lim, Mater. Chem. Phys., 131, 714 (2012); doi:10.1016/j.matchemphys.2011.10.039.
D.A. Spassky, S.N. Ivanov, V.N. Kolobanov, V.V. Mikhailin, V.N. Zemskov, B.I. Zadneprovski and L.I. Potkin, Radiat. Meas., 38, 607 (2004); doi:10.1016/j.radmeas.2004.03.019.
G.Y. Hong, B.S. Jeon, Y.K. Yoo and J.S. Yoo, J. Electrochem. Soc., 148, H161 (2001); doi:10.1149/1.1406496.
K. Polak, M. Nikl, K. Nitsch, M. Kobayashi, M. Ishii, Y. Usuki and O. Jarolimek, J. Lumin., 72-74, 781 (1997); doi:10.1016/S0022-2313(97)00079-3.
Y. Toyozawa and M. Inoue, J. Phys. Soc. Jpn., 21, 1663 (1966); doi:10.1143/JPSJ.21.1663.
E.G. Reut, Izv. Akad. Nauk SSSR, Ser. Fiz., 43, 1186 (1979).
V.B. Mikhailik, H. Kraus, D. Wahl and M.S. Mykhaylyk, Phys. Status Solid B, 242, R17 (2005); doi:10.1002/pssb.200409087.
T.T. Basiev, A.A. Sobol, Y.K. Voronko and P.G. Zverev, Opt. Mater., 15, 205 (2000); doi:10.1016/S0925-3467(00)00037-9.
T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko and R.C. Powell, Opt. Mater., 11, 307 (1999); doi:10.1016/S0925-3467(98)00030-5.